4 votos

Cómo calcular la integral indefinida que involucran sumas infinitas?

Quiero calcular la siguiente integral: $$ \int_{0}^{\infty}\left(x-\frac{x^3}{2}+\frac{x^5}{2\cdot 4}-\frac{x^7}{2\cdot 4\cdot 6}+\cdots\right)\;\left(1+\frac{x^2}{2^2}+\frac{x^4}{2^2\cdot 4^2}+\frac{x^6}{2^2\cdot 4^2\cdot 6^2}+\cdots\right)\,\mathrm{d}x $$

No tengo idea de cómo empezar; cualquier ayuda es muy apreciada.

4voto

ILIV Puntos 421

Una manera es considerar la forma cerrada de la serie. Entonces, la integral del producto de ellos es conocido como la transformada de Laplace :

enter image description here

0voto

Vic Goldfeld Puntos 218

Gracias, fue muy útil; sé encontrado una manera más fácil para demostrarlo:

A partir de $$\sum_{k=0}^{\infty} \frac{x^{2k+1}(-1)^k}{2^kk!}=xe^{-\frac{x^2}{2}}$$ podemos reescribir la integral de la siguiente manera:

$$ I=\int_{0}^{\infty}\left(x-\frac{x^3}{2}+\frac{x^5}{2\cdot 4}-\frac{x^7}{2\cdot 4\cdot 6}+\cdots\right)\;\left(1+\frac{x^2}{2^2}+\frac{x^4}{2^2\cdot 4^2}+\frac{x^6}{2^2\cdot 4^2\cdot 6^2}+\cdots\right)\,\mathrm{d}x = \int_{0}^{\infty}xe^{-\frac{x^2}{2}}\cdot\ \sum_{k=0}^{\infty} \frac{x^{2k}}{2^{2k}{k!}^2}\mathrm{d}x = \sum_{k=0}^{\infty} \left( \frac{1}{2^{2k}{k!}^2}\int_{0}^{\infty}e^{-\frac{x^2}{2}}\cdot\ x^{2k+1}\mathrm{d}x \right) $$

Conocer, con la sustitución de $x\to \sqrt{2x}$ obtenemos: $$I=\sum_{k=0}^{\infty} \left( \frac{1}{2^{2k}{k!}^2}\int_{0}^{\infty}\frac{\sqrt2}{2\sqrt{x}}\cdot e^{-x}\cdot\ 2^{k+\frac{1}{2}}\cdot x^{k+\frac{1}{2}}\mathrm{d}x \right)=\sum_{k=0}^{\infty} \left( \frac{1}{2^{k}{k!}^2}\int_{0}^{\infty} e^{-x}\cdot\ x^{k}\mathrm{d}x \right)=\sum_{k=0}^{\infty} \frac{1}{2^{k}{k!}}=\sqrt e$$ Donde he usado por la integral de la definición de la función gamma $\int_{0}^{\infty} e^{-x}\cdot\ x^{k}\mathrm{d}x=\Gamma (k+1)=k!$ y la conocida serie de expansión de la $e^x=\sum_{k=0}^{\infty} \frac{x^k}{{k!}}$.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X