Yo estoy haciendo la inducción matemática. Estoy atascado con la siguiente pregunta. El lado izquierdo es no ser igual para el lado derecho.
Por favor me guía de cómo hacerlo más.
$1^2 + 3^2+ 5^2 + \cdots + (2n-1)^2 = \frac{1}{3}n(2n-1)(2n+1)$.
Sol:
$P(n):\ 1^2 + 3^2 + 5^2 + \cdots + (2n-1)^2 = \frac{1}{3}n(2n-1)(2n+1)$.
Para $n=n_1 = 1$
$$P(1) = \frac{1}{3}{3} = (1)^2.$$ Por lo tanto es cierto para $n=n_0 = 1$.
Deja de ser cierto para $n=k$ $$P(k): 1^2 + 3^2 + 5^2 + \cdots + (2k-1)^2 = \frac{1}{3}k(2k-1)(2k+1).$$ Tenemos que probar que es cierto para $P(k+1)$. $$P(k+1) = 1^1+3^2+5^2+\cdots+(2k+1)^2 = \frac{1}{3}(k+1)(2k+1)(2k+3)\tag{A}.$$
Tomando LHS: $$\begin{align*} 1^2 + 3^2 + 5^2 + \cdots + (2k+1)^2 &= 1^2+3^2+5^2+\cdots + (2k+1)^2\\ &= 1^2 + 3^2 + 5^2 + \cdots + (2k-1)^2 + (2k+1)^2\\ &= \frac{1}{3}k(2k-1)(2k+1) + (2k+1)^2\\ &=\frac{k(2k-1)(2k+1)+3(2k+1)^2}{3}\\ &=\frac{(2k+1)}{3}\left[k(2k-1) + 3(2k+1)\right]\\ &=\frac{(2k+1)}{3}\left[2k^2 - k + 6k + 3\right]\\ &=\frac{1}{3}(2k+1)(2k^2 +5k + 3)\\ &=\frac{1}{3}(2k+1)(k+1)\left(k+\frac{3}{2}\right) \tag{B} \end{align*}$$
EDITAR:
La solución de EQ (A):
$=(1/3)(2k^2+5K+3) (2K+1) \tag{C}$
La comparación de EQ(B) y EQ(C)
Por lo tanto demostrado que es cierto para $n = k+1.$
Por lo tanto la proposición es verdadera para todos los $n >= 1$.
Gracias.