Tenemos que
$$
r_a(x) = {{\Gamma \left( {\left( {a + 1} \right)x} \right)} \over {\Gamma \left( x \right)}}
= {{\Gamma \left( {x +\, x} \right)} \over {\Gamma \left( x \right)}} = x^{\,\overline {\,\, x\,} }
$$
donde $x^{\,\overline {\,y\,} } $ denota el Aumento de Factorial.
Ahora, el Aumento de los Factorial se define (por $x$ $y$ reales y complejas) como
$$
h(x,y) = x^{\,\overline {\,y\,\,} } = {{\Gamma \left( {x + y} \right)} \over {\Gamma \left( x \right)}} = \prod\nolimits_{\;k\, = \,\,0}^{\,y} {\left( {x + k} \right)}
$$
donde el último término denota la Indefinida Producto, calculada para $k$ oscilan entre los límites indicados.
Así que podemos escribir la $f_a(x)$
$$ \bbox[lightyellow] {
f_ {\,} (x) = 2^{\,\, x} {{\Gamma \left( {x + ax} \right)} \over {\Gamma \left( x \right)}}
= \prod\nolimits_{\;k\, = \,\,0}^{\,un\,x} {2\left( {x + k} \right)} = 2^{\,\, x} x^{\,\, x} \prod\nolimits_{\;k\, = \,\,0}^{\,un\,x} {\left( {1 + k/x} \right)}
} \etiqueta{1}$$
Sobre los derivados de $r_a(x)$, desde
$$
\left\{ \matriz{
{\parcial \over {\partial x}}h(x,y) = {{\Gamma \left( {x + y} \right)} \over {\Gamma \left( x \right)}}\left( {\psi \left( {x + y} \right)
- \psi \left( x \right)} \right) \hfill \cr
{\parcial \over {\partial y}}h(x,y) = {{\Gamma \left( {x + y} \right)} \over {\Gamma \left( x \right)}}\psi \left( {x + y} \right) \hfill \cr} \right.
$$
entonces, como usted ya ha encontrado
$$
\eqalign{
y {d \over {dx}}r_a(x) = {\parcial \over {\partial x}}h(x,y) + {\parcial \over {\partial y}}h(x,y){d \over {dx}}y = \cr
Y = {{\Gamma \left( {x + ax} \right)} \over {\Gamma \left( x \right)}}\left( {\left( {a + 1} \right)\psi \left( {x + ax} \right)
- \psi \left( x \right)} \right) = \cr
Y = {{\Gamma \left( {x + ax} \right)} \over {\Gamma \left( x \right)}}\left( {a\psi \left( {x + ax} \right) + \left( {\psi \left( {x + ax} \right)
- \psi \left( x \right)} \right)} \right) \cr}
$$
donde, por $0<x$ (y $0<a$) $\Gamma(x+ax)/\Gamma(x)$ es claramente positiva.
Sin embargo, mientras que $\psi(x+ax)-\psi(x)$ también es positiva, ya $\psi(x)$ es creciente en ese intervalo, $a\psi(a+ax)$ introduce un término negativo para el menor $x$.
Para determinar el límite de$r_a'(x)$$x \to 0^+$, consideremos la serie de desarrollo de
$$ \bbox[lightyellow] {
\left\{ \matriz{
\ln \Gamma (cx) = \ln \left( {{1 \over {cx}}} \right) - \gamma cx + O\left( {x^{\,2} } \right) \hfill \cr
\psi (cx) = - {1 \over {cx}} - \gamma + {{\pi ^{\,2} } \over 6}cx + O\left( {x^{\,2} } \right) = \hfill \cr
= - {1 \over {cx}} - \gamma + \sum\limits_{0\, \le \,k} {\left( {{1 \over {k + 1}} - {1 \over {k + 1 + cx}}} \right)} \hfill \cr} \right.
} \etiqueta{2}$$
Por lo tanto
$$
\eqalign{
& \mathop {\lim }\limits_{x\; \a \;0^{\, + } } {d \over {dx}}r_a(x) = \mathop {\lim }\limits_{x\; \a \;0^{\, + } } {{\Gamma \left( {x + ax} \right)} \over {\Gamma \left( x \right)}}\mathop {\lim }\limits_{x\; \a \;0^{\, + } } \a la izquierda( {\left( {a + 1} \right)\psi \left( {x + ax} \right) - \psi \left( x \right)} \right) = \cr
Y = {1 \over {+1}}\left( { - \gamma} \right) \cr}
$$
cual es negativo para $0<a$.
Relativa $f_a(x)$ lugar
$$
\eqalign{
y {d \over {dx}}f_ {\,} (x) = \;2^{\,\, x}\ln 2r_ {\,} (x) + 2^{\,\, x} {d \over {dx}}r_ {\,} (x) = \cr
Y = 2^{\,\, x} r_ {\,} (x)\left( {a\ln 2 + {d \over {dx}}\ln \left( {r_ {\,} (x)} \right)} \right) = \cr
Y = 2^{\,\, x} r_ {\,} (x)\left( {a\ln 2 + {d \over {dx}}\ln \Gamma (x + ax) - {d \over {dx}}\ln \Gamma (x)} \right) = \cr
Y = 2^{\,\, x} r_ {\,} (x)\left( {a\ln 2 + \left( {a + 1} \right)\psi (x + ax) - \psi (x)} \right) \cr}
$$
(que es la ecuación que ya ha encontrado)
y
$$ \bbox[lightyellow] {
\eqalign{
& \mathop {\lim }\limits_{x\; \a \;0^{\, + } } f_ {\,} '(x) = 1\left( {\left( {a\ln 2} \right){1 \over {+1}} - {{\gamma} \over {+1}}} \right) = \cr
y = {a \over {+1}}\left( {\ln 2 - \gamma } \right) = {a \over {+1}}0.1159 \cdots \cr}
} \etiqueta{3}$$
Continuar con el desarrollo de la derivada de arriba
$$ \bbox[lightyellow] {
\eqalign{
y {d \over {dx}}f_ {\,} (x)\;\mathop /\limits_{} \;\left( {2^{\,\, x} r_ {\,} (x)} \right) = \cr
& = \ln 2 + \left( {a + 1} \right)\psi (x + ax) - \psi (x) = \cr
& = \ln 2 + \left( {a + 1} \right)\left( { - {1 \over {\left( {a + 1} \right)x}} - \gamma + \sum\limits_{0\, \le \,k} {\left( {{1 \over {k + 1}}
- {1 \over {k + 1 + \left( {a + 1} \right)x}}} \right)} } \right) - \left( { - {1 \over x} - \gamma + \sum\limits_{0\, \le \,k} {\left( {{1 \over {k + 1}}
- {1 \over {k + 1 + x}}} \right)} } \right) = \cr
& = \left( {a\ln 2 - {1 \over x} - \left( {a + 1} \right)\gamma + {1 \over x} + \gamma } \right)
+ \left( {a + 1} \right)\sum\limits_{0\, \le \,k} {\left( {{1 \over {k + 1}} - {1 \over {k + 1 + \left( {a + 1} \right)x}}} \right)}
- \sum\limits_{0\, \le \,k} {\left( {{1 \over {k + 1}} - {1 \over {k + 1 + x}}} \right)} = \cr
& = \left( {\ln 2 - \gamma } \right) + \sum\limits_{0\, \le \,k} {\left( {{un \over {k + 1}} + {1 \over {k + 1 + x}}
- {{\left( {a + 1} \right)} \over {k + 1 + \left( {a + 1} \right)x}}} \right)} = \cr
& = \left( {\ln 2 - \gamma } \right) + \sum\limits_{0\, \le \,k} {\left( {{1 \over {k + 1}}
- {{k + 1} \over {\left( {k + 1 + x} \right)\left( {k + 1 + \left( {a + 1} \right)x} \right)}}} \right)} \cr}
} \etiqueta{4}$$
y
$$ \bbox[lightyellow] {
\eqalign{
& 0 \le {1 \over {k + 1}} - {{k + 1} \over {\left( {k + 1 + x} \right)\left( {k + 1 + \left( {a + 1} \right)x} \right)}} = \cr
Y = {1 \over {k + 1}} - {1 \over {\left( {1 + x/\left( {k + 1} \right)} \right)\left( {k + 1 + \left( {a + 1} \right)x} \right)}}\quad \left| {\;0 \le x,k} \right. \cr}
} \etiqueta{5}$$
por lo tanto, su tesis se demuestra.