A partir de (aquí evidentemente $n\ge k$ para que sea significativo).
$$\sum_{j=0}^{n-k} (-1)^j {2k+2j\elegir j}
{n+k+j+1\elegir n-k-j}
\\ = (-1)^{n-k} \sum_{j=0}^{n-k} (-1)^j {2n-2j\elegir n-k-j}
{2n-j+1\elegir j}
\\ = (-1)^{n-k} \sum_{j=0}^{n-k} (-1)^j {2n-2j\elegir n-k-j}
{2n+1-j\elegir 2n+1-2j}.$$
escribimos
$$(-1)^{n-k} \sum_{j=0}^{n-k} (-1)^j
{2n+1-j\elegir 2n+1-2j} [z^{n-k-j}] (1+z)^{2n-2j}
\\ = (-1)^{n-k} [z^{n-k}] (1+z)^{2n} \sum_{j=0}^{n-k} (-1)^j
{2n+1-j\elegir 2n+1-2j} z^j (1+z)^{-2j}$$
De no contribución para el coeficiente de extractor al $j\gt n-k$
y por lo tanto puede continuar con
$$(-1)^{n-k} [z^{n-k}] (1+z)^{2n} \sum_{j\ge 0} (-1)^j
{2n+1-j\elegir 2n+1-2j} z^j (1+z)^{-2j}
\\ = (-1)^{n-k} [z^{n-k}] (1+z)^{2n} \sum_{j\ge 0} (-1)^j
z^j (1+z)^{-2j} [w^{2n+1-2j}] (1+w)^{2n+1-j}
\\ = (-1)^{n-k} [z^{n-k}] (1+z)^{2n} [w^{2n+1}] (1+w)^{2n+1}
\sum_{j\ge 0} (-1)^j
z^j (1+z)^{-2j} w^{2j} (1+w)^{-j}
\\ = (-1)^{n-k} [z^{n-k}] (1+z)^{2n} [w^{2n+1}] (1+w)^{2n+1}
\frac{1}{1 + z w^2 / (1+z)^2 / (1+w)}
\\ = (-1)^{n-k} [z^{n-k}] (1+z)^{2n+2} [w^{2n+1}] (1+w)^{2n+2}
\frac{1}{(1+z)^2(1+w) + z w^2}
\\ = (-1)^{n-k} [z^{n-k}] (1+z)^{2n+2} [w^{2n+1}] (1+w)^{2n+2}
\frac{1}{(w+1+z)(wz+1+z)}
\\ = (-1)^{n-k} [z^{n+1-k}] (1+z)^{2n+2} [w^{2n+1}] (1+w)^{2n+2}
\frac{1}{(w+1+z)(w+(1+z)/z)}.$$
Ahora el interior término es
$$\mathrm{Res}_{w=0} \frac{1}{w^{2n+2}}
(1+w)^{2n+2}
\frac{1}{(w+1+z)(w+(1+z)/z)}.$$
Residuos de suma cero y el residuo en el infinito es cero debido a que
$\lim_{R\rightarrow\infty} 2\pi R \times R^{2n+2} / R^{2n+2} /R^2 =
0.$ Por lo tanto podemos calcular esta de menos la suma de los residuos en
$-(1+z)$ $-(1+z)/z.$ El primero de los rendimientos
$$-\frac{1}{(1+z)^{2n+2}} z^{2n+2} \frac{1}{-(1+z)+(1+z)/z}.$$
Sustituir a este en el resto del coeficiente de extractor para obtener
$$(-1)^{n+1-k} [z^{n+1-k}] z^{2n+3} \frac{1}{1-z^2} = 0.$$
El segundo de los rendimientos
$$- \frac{z^{2n+2}}{(1+z)^{2n+2}} \frac{1}{z^{2n+2}}
\frac{1}{-(1+z)/z+1+z}$$
Una vez más sustituir a este en el resto del coeficiente de extractor para obtener
$$(-1)^{n+1-k} [z^{n+1-k}] \frac{1}{-(1+z)/z+1+z}
= (-1)^{n+1-k} [z^{n+1-k}] \frac{z}{z^2-1}
\\ = - [z^{n+1-k}] \frac{z}{z^2-1}
= [z^{n-k}] \frac{1}{1-z^2}.$$
Este es
$$\bbox[5px,border:2px solid #00A000]{
[[(n-k) \;\text{es aún}]]
= \frac{1+(-1)^{n-k}}{2}}$$
como se reivindica.