4 votos

Integral( utilizando la sustitución de Euler)

Intento resolver esta integral, pero sin éxito. ¿Pueden ayudarme, por favor?

$$\int \frac{1}{2x+\sqrt{4x^{2}-x+1}}\,dx$$

¡Muchas gracias!

0 votos

0 votos

Gracias, pero necesito también la forma de solución, no sólo el resultado

0 votos

Haga clic en "mostrar pasos" (pero prepárese...)

6voto

Robert Christie Puntos 7323

Sustitución hiperbólica
Nota $4 x^2 - x +1 = 4\left(x - \frac{1}{8} \right)^2 + \frac{15}{16}$ . Por lo tanto, vamos a realizar un $u$ -sustitución, $x = \frac{1}{8} + \frac{\sqrt{15}}{8} \sinh(t)$ . Entonces $$ 4 x^2 - x +1 = \frac{15}{16} \cosh^2(t) $$ y $\mathrm{d} x = \frac{\sqrt{15}}{8} \cosh(t) \mathrm{d} t$ Por lo tanto $$ \int \frac{\mathrm{d} x}{2x + \sqrt{ 4x^2-x+1}} = \int \frac{\frac{\sqrt{15}}{8} \cosh(t)}{\frac{1}{4} + \frac{\sqrt{15}}{4} \sinh(t) + \frac{\sqrt{15}}{4} \cosh(t)} \mathrm{d} t = \frac{\sqrt{15}}{4} \int \frac{ \left( \mathrm{e}^t + \mathrm{e}^{-t}\right)\mathrm{d} t} {1 + \sqrt{15} \mathrm{e}^t} $$ Esta última integral es fácil $$ \begin{eqnarray} \sqrt{15} \int \frac{\mathrm{e}^t + \mathrm{e}^{-t}}{1+\sqrt{15} \mathrm{e}^t} \mathrm{d} t &=& \int \left( \frac{\sqrt{15}}{\mathrm{e}^{t} } - 15 + \frac{16 \sqrt{15} \mathrm{e}^t }{1 + \sqrt{15} \mathrm{e}^t} \right) \mathrm{d} t \\ &=& -\sqrt{15} \mathrm{e}^{-t} - 15 t + 16 \log\left( 1 + \sqrt{15} \mathrm{e}^t\right) + \color{\gray}{\text{const}} \end{eqnarray} $$ Sustitución por la espalda de $t = \sinh^{-1}\left(\frac{8x-1}{\sqrt{15}} \right)$ y utilizando $\mathrm{e}^{-\sinh^{-1}(z)} = \sqrt{1+z^2}-z$ da $$ \int \frac{\mathrm{d} x}{2x + \sqrt{ 4x^2-x+1}} = \frac{1}{4} (8 x-1)-\frac{1}{4} \sqrt{(8 x-1)^2 + 15}+\frac{1}{4} \sinh ^{-1}\left(\frac{8 x-1}{\sqrt{15}}\right)+4 \log \left(15-(8 x-1)+\sqrt{(8 x-1)^2+15}\right) + \color{\gray}{\text{const}} $$

Sustitución de Euler
Dejemos que $u = 2x + \sqrt{4 x^2 - x+1}$ . Observe que $(u-2x)^2 = u^2 - 4 x u + 4 x^2 = 4 x^2 - x + 1$ , lo que hace que $$ x = \frac{u^2-1}{4 u-1} = \frac{1}{16} + \frac{u}{4} - \frac{15}{16(4u-1)} $$ Por lo tanto, $$ \mathrm{d} x = \frac{\mathrm{d} u}{4} + \frac{15}{4} \frac{\mathrm{d} u}{(4u-1)^2} $$ Utilizando lo anterior $$ \begin{eqnarray} \int\frac{\mathrm{d} x}{2x + \sqrt{4x^2-x+1}} &=& \int \frac{1}{u} \left( \frac{1}{4} + \frac{15}{4} \frac{1}{(4u-1)^2} \right) \mathrm{d} u \\ &=& \int \left( \frac{4}{u} + \frac{15}{(4u-1)^2} - \frac{15}{4u-1} \right) \mathrm{d} u \\ &=& 4 \ln(u) - \frac{15}{4(4u-1)} - \frac{15}{4} \ln(1-4u) + \color{\gray}{\text{const}} \end{eqnarray} $$

0 votos

Buen trabajo en esto, pero el OP específicamente quiere hacerlo usando la sustitución de Euler, no una sustitución hiperbólica.

0 votos

+1, También podría responder a esta pregunta anterior sobre la misma integral "Integral sin usar la sustitución de Euler" . Por lo que entiendo la sustitución de Euler, por ejemplo, la entrada Sustituciones de Euler de la Enciclopedia Springer de Matemáticas para $a>0$ es $\sqrt{ax^2+bx+c}=t-\sqrt{a}x$ .

0 votos

@AméricoTavares Culpa mía, no estaba prestando atención. He añadido también la solución de sustitución de Euler.

1voto

Ethan Reesor Puntos 101

Ir al enlace

http://www.wolframalpha.com/input/?i=1%2F%282x+%2B+sqrt%284x%5E2-x%2B1%29%29

y encontrará un montón de datos sobre su función, incluida la integral que busca.

0 votos

OK, ahora veo que alguien más ya había probado Wolfram Alpha. Lo siento.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X