$\newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\dd}{{\rm d}}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\ic}{{\rm i}}% \newcommand{\imp}{\Longrightarrow}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert #1 \right\vert}% \newcommand{\yy}{\Longleftrightarrow}$
$$ \int_{0}^{n}x^{1/2}\,\dd x < \sum_{k = 1}^{n}\sqrt{\vphantom{\large A}k\,} < \int_{1}^{n + 1}x^{1/2}\,\dd x \quad\imp\quad {2 \over 3}\,n^{3/2} < \sum_{k = 1}^{n}\sqrt{\vphantom{\large A}k\,} < {2 \over 3}\bracks{\pars{n + 1}^{3/2} - 1} $$
$$ {2 \over 3}\quad <\quad {1 \over n}\sum_{k = 1}^{n}\sqrt{\vphantom{\large A}k \over n\,}\quad <\quad {2 \over 3}\bracks{\pars{1 + {1 \over n}}^{3/2} - {1 \over n^{3/2}}} $$
$$ \vphantom{\Huge A} $$
$${\large% \lim_{n \to \infty} \pars{{1 \over n}\sum_{k = 1}^{n}\sqrt{\vphantom{\large A}k \over n\,}\,\,} = {2 \over 3}} $$