Que $R>0$ sea un radio tal que todas la singularidades $z_j$ dentro del disco $D(0,R)$. (Centro $0$ y radio $R$) Por lo tanto, por el teorema del residuo, uno tiene
$$2i\pi \sum\limits{k=1}^n \operatorname{Res}{zk}(f) = \int{C(0,R)^+} f(z) dz.$$ Now perform a change of variable $z=1/w$ to get $$\int{C(0,R)^+} f(z) dz = -\int{C(0,1/R)^-} \frac{1}{w^2}f\left(\frac{1}{w}\right) dw= \int_{C(0,1/R)^+} \frac{1}{w^2}f\left(\frac{1}{w}\right) dw.$$ Since the $z_j$ were inside $D (0, R) $, it is clear that the $1/zj$ are now outside $D(0,1/R) $. Hence, the only singularity of $\frac {1} {w ^ 2} f \left (\frac{1}{w}\right)$ inside $D(0,1/R) $ is $0$. Hence, by the residue theorem again, one has $$\int{C(0,1/R)^+} \frac{1}{w^2}f\left(\frac{1}{w}\right) dw = 2i\pi\operatorname{Res}{0}\left(w \mapsto \frac{1}{w^2}f\left(\frac{1}{w}\right)\right).$$ If we put everything together, we get $$\sum\limits{k=1}^n \operatorname{Res}_{zk}(f) =\operatorname{Res}{0}\left(w \mapsto \frac{1}{w^2}f\left(\frac{1}{w}\right)\right).$$ Now the only thing you have to prove is that $0 $ is a simple pole of $w # \mapsto \frac{1}{w^2}f\left(\frac{1}{w}\right).$ Indeed if you do this, you will have $% $ $\operatorname{Res}{0}\left(w \mapsto \frac{1}{w^2}f\left(\frac{1}{w}\right)\right) = \lim{w\to 0} w \frac{1}{w^2}f\left(\frac{1}{w}\right)=\lim_{z\to \infty}zf(z)$y se realizan. ¿Eres capaz de hacer eso?