Que y=f−1(x). Como sabemos:
\begin{align} \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{1}{{f}'(y)} \end {Alinee el} Thereof tenemos:
\begin{align} \frac{\mathrm{d^2} y}{\mathrm{d} x^2}=\frac{-{f}''(y)}{({f}'(y))^3} \end {Alinee el}
\begin{align} \frac{\mathrm{d^3} y}{\mathrm{d} x^3}=\frac{3({f}''(y))^2-{f}'(y){f}'''(y)}{({f}'(y))^5} \end {Alinee el} existe una regla general para
\begin{align} \frac{\mathrm{d^n} y}{\mathrm{d} x^n}=?\end {Alinee el}