Permita que$X_{1},X_{2},X_{3},...,X_{n}$ sea una muestra aleatoria de una distribución con pdf$$f(x;\alpha,\theta)=\frac{e^{-x/\theta}}{\theta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}I_{(0,\infty)}(x ),\alpha,\theta>0$ $
Encuentre el estimador de máxima verosimilitud de$\alpha$ y$\theta$. Dejar $\Psi(\alpha)=\frac{d\Gamma(\alpha)}{d\alpha}$
Mi intento, \begin{eqnarray*} \mathcal{L}(\alpha,\theta)&=&\prod_{i=1}^{n}f(x_i)\\ &=&\prod_{i=1}^{n}\frac{e^{-x_i/\theta}}{\theta^{\alpha}\Gamma(\alpha)}x_i^{\alpha-1}\\ &=&\frac{1}{\Gamma^{n}(\alpha)\cdot \theta^{n \alpha}}(\prod_{i=1}^{n}x_i)^{\alpha-1}\exp(-\sum_{i=1}^{n}\frac{x_i}{\theta}) \end {eqnarray *} \begin{eqnarray*} \ell(\alpha,\theta)&=&-n\log(\Gamma(\alpha))-n\alpha\log(\theta)+(\alpha-1)\sum_{i=1}^{n}\log(x_i)-\frac{1}{\theta}\sum_{i=1}^{n}x_i\\ \frac{\delta \ell(\alpha,\theta)}{\delta \theta}&=&-\frac{n\alpha}{\theta}+\frac{1}{\theta^2}\sum_{i=1}^{n}x_i=0\\ \frac{1}{\theta^2}\sum_{i=1}^{n}x_i&=&\frac{n\alpha}{\theta}\\ \hat{\theta}&=&\frac{\sum_{i=1}^{n}x_i}{n\alpha}\\ &=&\frac{1}{\alpha}\bar{x}\\ \end {eqnarray *} \begin{eqnarray*} \frac{d \ell(\alpha,\hat{\theta})}{d\alpha}&=&\frac{-n \cdot \Gamma'(\alpha)}{\Gamma(\alpha)}-n\log(\frac{1}{\alpha}\bar{x})+\sum_{i=1}^{n}\log(x_i)=0\\ &=&\frac{-n \cdot \Gamma'(\alpha)}{\Gamma(\alpha)}+n\log(\alpha)-n\log(\bar{x})+\sum_{i=1}^{n}\log(x_i)=0\\ \log(\alpha)-\frac{\Gamma'(\alpha)}{\Gamma(\alpha)}&=&\log(\bar{x})-\frac{\sum_{i=1}^{n}\log(x_i)}{n} \end {eqnarray *}
No podría continuar más para encontrar el$\alpha$. En segundo lugar, no sé cómo usar$\Psi(\alpha)=\frac{d\Gamma(\alpha)}{d\alpha}$ como se indica en la pregunta. Espero que alguien me lo explique.
Gracias por adelantado.