Traslademos este problema al Plano de Coordenadas con $A$ en el origen, $AB$ en el $X$ eje, y $AB=2\alpha$ . Así, $A\equiv(0,0)$ y $B\equiv(2\alpha,0)$ . También $A\Gamma=B\Delta=r$ . Por último, dejemos que $\theta=\angle EZB$ $$$$ The equation of $ A\Gamma $ is $ y=x\tan70^{\c} $ and the equation of $ B\Delta $ is $ y=x\tan120^{\circ}-2\alpha\tan120^{\circ} $. $$$$ Así, $\Gamma\equiv (x_1,x_1\tan70^{\circ})$ y $\Delta\equiv (x_2,x_2\tan120^{\circ}-2\alpha\tan120^{\circ})$ . $$$$ Thus the midpoint $ E $ has coordinates $ \left(\dfrac{x_1+x_2}2, \dfrac{x_1\tan70^{\circ}+x_2\tan120^{\circ}-2\alpha\tan120^{\circ}}2\right)$.
$$$$ Also $$ r=x_1\sec70^{\circ}\Rightarrow x_1=r\cos70^{\circ} $$ and $$ r=x_2\sec120^{\circ}-2\alpha\sec120^{\circ}\Rightarrow x_2=(r+2\alpha\sec120^{\circ})\cos120^{\circ} $$ $$$$
Sustitución de $x_1,x_2$ con sus expresiones equivalentes (esto parece complicado al principio, pero todo se simplifica), $E$ tiene las coordenadas $$$$ $$ \left(\dfrac{r\cos70^{\circ}+(r+2\alpha\sec120^{\circ})\cos120^{\circ}}2, \dfrac{{r\cos70^{\circ}\tan70^{\circ}+(r+2\alpha\sec120^{\circ})\cos120^{\circ}\tan120^{\circ}-2\alpha\tan120^{\circ}}}2\right) $$ $$$$ Sobre la simplificación, $$E\equiv \left(\dfrac{r\cos70^{\circ}+r\cos120^{\circ}+2\alpha}2,\dfrac{r\sin70^{\circ}+r\sin120^{\circ}}2\right)$$ $$$$ Lastly since $ Z $ is the midpoint of $ AB $, $ Z $ has the coordinates $ (\alpha,0)$.
$$$$Thus, the slope of $ EZ $ is $$ \tan\theta=\left( \dfrac{\dfrac{r\sin70^{\circ}+r\sin120^{\circ}}2-0}{\dfrac{r\cos70^{\circ}+r\cos120^{\circ}+2\alpha}2-\alpha}\right) $$ $$$$ $$\Rightarrow\tan\theta=\left( \dfrac{{r\sin70^{\circ}+r\sin120^{\circ}}}{{r\cos70^{\circ}+r\cos120^{\circ}}}\right)$$ $$$$
$$\Rightarrow\theta=\tan^{-1}\left( \dfrac{{r\sin70^{\circ}+r\sin120^{\circ}}}{{r\cos70^{\circ}+r\cos120^{\circ}}}\right)$$ $$$$
$$=\tan^{-1}\left( \dfrac{{\sin70^{\circ}+\sin120^{\circ}}}{{\cos70^{\circ}+\cos120^{\circ}}}\right)$$ $$$$
$$=\tan^{-1}\left( \dfrac{{2\sin95^{\circ}\cos25^{\circ}}}{{2\cos95^{\circ}\cos25^{\circ}}}\right)=\tan^{-1}(\tan95^{\circ})$$ $$$$ Thus $ \theta=95^{\circ}$
0 votos
¿Podría compartir la pregunta original sin construcciones añadidas?
0 votos
@Ishan: Aquí tienes.