Cómo resolver la ecuación cuadrática$$ax^{2}+bx+c=0$$ such as $$a \neq 0$ $ Divida por ambos lados de la ecuación, como$$\frac{a}{a}x^2 + \frac{b}{a}x + \frac{c}{a} = 0$ $$$\Rightarrow x^{2}+\frac{b}{a}x + \frac{c}{a} = 0$ $$$\Rightarrow x^{2} + \frac{b}{a}x + (\frac{b}{2a})^2 - (\frac{b}{2a})^2 + \frac{c}{a}=0$ $$$\Rightarrow (x + \frac{b}{2a})^2 - (\frac{b}{2a})^{2} + \frac{c}{a} = 0$ $$$\Rightarrow (x + \frac{b}{2a})^2 = (\frac{b}{2a})^2 - \frac{c}{a}$ $$$\Rightarrow (x + \frac{b}{2a})^2 = \frac{b^2}{4a^{2}} - \frac{c}{a}$ $$$\Rightarrow (x + \frac{b}{2a})^2 = \frac{b^{2}}{4a^{2}} - \frac{4ac}{4a^{2}}$ $$$\Rightarrow (x + \frac{b}{2a})^2 = \frac{b^{2} - 4ac}{4a^{2}}$ $$$\Rightarrow (x + \frac{b}{2a}) =\pm \sqrt{\frac{b^{2} - 4ac}{4a^{2}}}$ $$$\Rightarrow x = -\frac{b}{2a} \pm \sqrt{\frac{b^{2} - 4ac}{4a^{2}}}$ $$$\Rightarrow x = \frac{-b\pm\sqrt{b^{2} - 4ac}}{2a}$ $
Respuesta
¿Demasiados anuncios?
Andy
Puntos
148