\mathrm M := \left[\begin{array}{c|c} \,\mathrm X & \mathrm C\\ \hline -\mathrm C^\top & \,\,\mathrm O_2\end{array}\right]
where n \times n matrix \rm X is positive definite and, thus, invertible. Using Gaussian elimination,
\left[\begin{array}{c|c} \mathrm I_n & \mathrm O_{n \times 2}\\ \hline \mathrm C^\top \mathrm X^{-1} & \mathrm I_2\end{array}\right] \left[\begin{array}{c|c} \,\mathrm X & \mathrm C\\ \hline -\mathrm C^\top & \,\,\mathrm O_2\end{array}\right] = \left[\begin{array}{c|c} \mathrm X & \mathrm C\\ \hline \quad\mathrm O_{2 \times n} & \,\,\mathrm C^\top \mathrm X^{-1} \mathrm C\end{array}\right]
Since the determinant of a block triangular matrix is the product of the determinants of the diagonal blocks,
\det (\mathrm M) = \det (\mathrm X) \cdot \det \Big(\mathrm C^\top \mathrm X^{-1} \mathrm C \Big)
where the Schur complement \mathrm C^\top \mathrm X^{-1} \mathrm C is a 2 \times 2 matrix (whose determinant is easy to compute). Note that \det (\mathrm X) > 0 and that n \times 2 matrix \mathrm X^{-1} \mathrm C puede ser calculada usando eliminación Gaussiana.
El uso de SymPy para verificar:
>>> from sympy import *
>>> n = Symbol('n', integer=True)
>>> X = MatrixSymbol('X',n,n)
>>> C = MatrixSymbol('C',n,2)
>>> O = ZeroMatrix(2,2)
>>> M = BlockMatrix([[ X, C],
[-C.T, O]])
La construcción de la eliminación de la matriz,
>>> E = BlockMatrix([[ Identity(n), ZeroMatrix(n,2)],
[C.T * Inverse(X), Identity(2)]])
La realización de la eliminación Gaussiana,
>>> block_collapse(E * M)
Matrix([[X, C],
[0, C'*X^-1*C]])