$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
Permite a los $\ds{\fermi\pars{x}\equiv
\left\{\begin{array}{lcrcl}
{\sin\pars{2x} \over x} & \mbox{if} & x & \not= & 0
\\[1mm]
2 & \mbox{if} & x & = & 0
\end{array}\right.}$
Tenga en cuenta que $\ds{\fermi}$ es una incluso la función de $\ds{x}$:
$\ds{\fermi\pars{-x}=\fermi\pars{x}\,,\ \forall\ x\in{\mathbb R}}$.
Vamos a utilizar el
$\large\mbox{Abel-Plana Formula}$:
\begin{align}
&\color{#66f}{\large\sum_{n = 1}^{\infty}\pars{-1}^{n}\,{\sin\pars{2n} \over n}}
=-2 + \sum_{n = 0}^{\infty}\pars{-1}^{n}\fermi\pars{n}
\\[5mm]&=-2 + \bracks{\half\,\fermi\pars{0} + \ic\
\underbrace{\int_{0}^{\infty}%
{\fermi\pars{\ic t} - \fermi\pars{-\ic t} \over 2\sinh\pars{\pi t}}\,\dd t}
_{\ds{=\ \color{#c00000}{\large 0}}}}
\\[5mm]&=-2 + \bracks{\half\times 2 + \ic\times 0} = \color{#66f}{\Large -1}
\end{align}