¿Qué es un polinomio irreductible en$\mathbb{Z}$ que tiene la raíz$\sqrt{2}+\sqrt{3}$? Obviamente esa raíz no está en$\mathbb{Z}$.
Intenté$$(x-(-\sqrt{2}-\sqrt{3})(x-(-\sqrt{2}+\sqrt{3})(x-(\sqrt{2}-\sqrt{3})(x-(\sqrt{2}+\sqrt{3}))$$ That doesn't come out with integer terms. If I had to guess the degree of the integer coefficient irreducible polynomial, I'd guess $ 4 $, pero no sé.