$\newcommand{\ángulos}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Leftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\color{#f00}{\sum_{m = 0}^{q}\pars{n - m}{\pars{p + m}! \over m!}} =
p!\sum_{m = -\infty}^{q}\pars{n - m}{p + m \choose m} =
p!\sum_{m = -q}^{\infty}\pars{n + m}{p - m \choose -m} =
\\[3mm] = &\
p!\sum_{m = 0}^{\infty}\pars{n + m - q}{p - m + q \choose -m + q} =
p!\sum_{m = 0}^{\infty}\pars{n + m - q}{-p - 1 \choose -m + q}\pars{-1}^{-m + q}
\\[3mm] = &\
\pars{-1}^{q}\,p!\lim_{x \to 1^{-}}\pars{n - q + x\,\partiald{}{x}}
\underbrace{\sum_{m = 0}^{\infty}{-p - 1 \choose -m + q}\pars{-x}^{m}}
_{\ds{\equiv\ \mathcal{I}\pars{x}}}\,,\
\qquad\verts{x} < 1\tag{1}
\end{align}
\begin{align}
\mathcal{I}\pars{x} & =
\sum_{m = 0}^{\infty}\pars{-x}^{m}\oint_{\verts{z} = 1^{-}}
{\pars{1 + z}^{-p - 1} \over z^{-m + q + 1}}\,{\dd z \over 2\pi\ic} =
\oint_{\verts{z} = 1^{-}}
{\pars{1 + z}^{-p - 1} \over z^{q + 1}}\sum_{m = 0}^{\infty}\pars{-xz}^{m}
\,{\dd z \over 2\pi\ic}
\\[3mm] & =
\oint_{\verts{z} = 1^{-}}
{\pars{1 + z}^{-p - 1} \over z^{q + 1}\pars{1 + xz}}
\,{\dd z \over 2\pi\ic}
\\[8mm]
\mathcal{I}\pars{x \to 1^{-}} & =
\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{-p - 2} \over z^{q + 1}}
\,{\dd z \over 2\pi\ic} = {-p - 2 \choose q} =
{p + 2 + q - 1 \choose q}\pars{-1}^{q}
\\[3mm] & = {p + q + 1 \choose q}\pars{-1}^{q}\tag{2}
\\[8mm]
\mathcal{I}'\pars{x \to 1^{-}} & =
-\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{-p - 3} \over z^{q}}
\,{\dd z \over 2\pi\ic} = -{-p - 3 \choose q - 1} =
-{p + 3 + q - 1 - 1 \choose q - 1}\pars{-1}^{q - 1}
\\[3mm] & = {p + q + 1 \choose q - 1}\pars{-1}^{q}\tag{3}
\end{align}
El siguiente paso es reemplazar $\pars{2}$$\pars{3}$$\pars{1}$:
\begin{align}
&\color{#f00}{\sum_{m = 0}^{q}\pars{n - m}{\pars{p + m}! \over m!}} =
p!\bracks{\pars{n - q}{p + q + 1 \choose q} + {p + q + 1 \choose q - 1}}
\\[3mm] = &\
p!\bracks{\pars{n - q}{\pars{p + q + 1}! \over q!\pars{p + 1}!} +
{\pars{p + q + 1}! \over \pars{q - 1}!\pars{p + 2}!}}
\\[3mm] = &\
{\pars{p + q + 1}! \over q!}\bracks{\pars{n - q}{1 \over p + 1} +
{q \over \pars{p + 2}\pars{p + 1}}}
\\[3mm] = &\
{\pars{p + q + 1}! \over q!}\bracks{\pars{n - q}{1 \over p + 1} +
q\pars{{1 \over p + 1} - {1 \over p + 2}}}
\\[3mm] = &\ \color{#f00}{%
{\pars{p + q + 1}! \over q!}\pars{{n \over p +1} - {q \over p + 2}}}
\end{align}