14 votos

Encontrar las soluciones reales a $16^{x^{2} + y } + 16^{y^{2}+ x} = 1$

Tenemos , $16^{x^{2} + y } + 16^{y^{2}+ x} = 1$ , entonces tenemos que encontrar todos los valores reales de a$x$$y$.He probado esta pregunta, pero no puedo continuar porque no soy capaz de simplificar esta expresión a un grado que podría ser resuelto.

18voto

Sandeep Thilakan Puntos 1566

$x^2 + y^2 + x + y = (x + 1/2)^2 + (y + 1/2)^2 - 1/2 \geq -1/2$ y la igualdad sólo se produce cuando se $x = y = - 1/2$.

El uso de AM-GM desigualdad $16^{x^2 + y} + 16^{y^2 + x} \geq 2\cdot\sqrt{16^{x^2+y^2+x+y}} \geq 2\cdot16^{-1/4} = 1$ y la igualdad sólo se produce cuando se $x=y=-1/2$

0voto

Felix Marin Puntos 32763

$\newcommand{\+}{^{\daga}}% \newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}% \newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\down}{\downarrow}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\mitad}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\a la derecha\vert\,}% \newcommand{\cy}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$ $$ \mbox{Vamos a}\quad 4^{x^{2} + y} = \cos\pars{\theta}\,,\quad 4^{y^{2} + x} = \sin\pars{\theta}\qquad\mbox{con}\qquad \theta\ \en\ \pars{0,{\pi \over 2}} $$

$$ x^{2} + y ={\ln\pars{\cos\pars{\theta}} \over 2\ln\pars{2}}\,,\qquad y^{2} + x ={\ln\pars{\sin\pars{\theta}} \over 2\ln\pars{2}} $$

$$ \bracks{{\ln\pars{\cos\pars{\theta}} \over 2\ln\pars{2}} - x^{2}}^{2} + x ={\ln\pars{\sin\pars{\theta}} \over 2\ln\pars{2}} $$

$$ x^{4} - {\ln\pars{\cos\pars{\theta}} \\ln\pars{2}}\,x^{2} + x + \bracks{{\ln^{2}\pars{\cos\pars{\theta}} \más de 4\ln^{2}\pars{2}} - {\ln\pars{\sin\pars{\theta}} \over 2\ln\pars{2}}} = 0\,,\qquad \theta\ \en\ \pars{0,{\pi \over 2}} $$ que expresan $x$ ( paramétrica ) como una función de la $\theta$.

0voto

fabrizioM Puntos 11498

Este no es exactamente el problema original , pero es relativa a un procedimiento propuesto por Arthur. Parece que siempre se puede encontrar el verdadero número de soluciones de $(x , y)$ $A \ge 1$

$$ 16^{x^2 + y} + 16^{y^2 + x} = A $$

$x^2 + y = y^2 + x = \dfrac{ln{(\frac{A}{2})}}{ln{16}}$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X