Problema: Evaluar:
$$I=\int_0^{\pi/2} \ln(\sin(x))\tan(x)dx$$
He probado a intentar mediante el uso de la Beta, Gamma y Digamma Funciones. Mi planteamiento era el siguiente:
$$$$ Considere la posibilidad de $$I(a,b)=\int_0^{\pi/2} \sin^a(x)\sin^b(x)\cos^{-b}(x)dx$$ $$$$ $$=\dfrac{1}{2}\beta\bigg (\dfrac{a+b+1}{2},\dfrac{1-b}{2}\bigg )= \dfrac{1}{2} \dfrac{\Gamma(\frac{a+b+1}{2})\Gamma(\frac{1-b}{2})}{\Gamma(\frac{a+2}{2})}$$ Ahora, $$\dfrac{1}{2}\dfrac{\partial}{\partial a} \beta\bigg (\dfrac{a+b+1}{2},\dfrac{1-b}{2}\bigg )\bigg |_{a=0,b=1} = \int_0^{\pi/2}\ln(\sin(x))\sin^a(x)\tan^b(x)dx \bigg |_{a=0,b=1} = I$$ Ahora, $$\dfrac{\partial}{\partial a} \beta\bigg (\dfrac{a+b+1}{2},\dfrac{1-b}{2}\bigg )$$ $$$$ $$=\dfrac{1}{2} \dfrac{\Gamma(\frac{1-b}{2})}{(\Gamma(\frac{a+2}{2}))^2}\bigg (\Gamma '\bigg (\frac{a+b+1}{2}\bigg )\Gamma \bigg ( \frac{a+2}{2}\bigg ) - \Gamma '\bigg ( \frac{a+2}{2}\bigg )\Gamma \bigg (\frac{a+b+1}{2}\bigg )\bigg ) $$ $$$$ $$= \dfrac{1}{2}\dfrac{\Gamma(\frac{1-b}{2})}{\Gamma(\frac{a+2}{2})}\bigg (\psi\bigg ( \frac{a+b+1}{2}\bigg )\Gamma \bigg (\frac{a+b+1}{2}\bigg ) - \psi\bigg ( \frac{a+2}{2}\bigg )\Gamma \bigg (\frac{a+b+1}{2}\bigg )\bigg )$$ $$$$ $$=\dfrac{1}{2} \dfrac{\Gamma(\frac{a+b+1}{2})\Gamma(\frac{1-b}{2})}{\Gamma(\frac{a+2}{2})}\bigg (\psi\bigg ( \frac{a+b+1}{2}\bigg )-\psi\bigg ( \frac{a+2}{2}\bigg )\bigg )$$ $$$$ $$\Rightarrow\dfrac{\partial}{\partial a} \beta\bigg (\dfrac{a+b+1}{2},\dfrac{1-b}{2}\bigg )=\dfrac{1}{2} \dfrac{\Gamma(\frac{a+b+1}{2})\Gamma(\frac{1-b}{2})}{\Gamma(\frac{a+2}{2})}\bigg (\psi\bigg ( \frac{a+b+1}{2}\bigg )-\psi\bigg ( \frac{a+2}{2}\bigg )\bigg )$$
$$$$
$$\Longrightarrow \dfrac{1}{2} \dfrac{\partial}{\partial a} \beta \bigg ( \dfrac{a+b+1}{2} ,\dfrac{1-b}{2} \bigg ) \bigg |_{a=0,b=1} = I $$ $$$$ $$=\dfrac{1}{2}\times \dfrac{1}{2} \dfrac{\Gamma(\frac{a+b+1}{2})\Gamma(\frac{1-b}{2})}{\Gamma(\frac{a+2}{2})}\bigg (\psi\bigg ( \frac{a+b+1}{2}\bigg )-\psi\bigg ( \frac{a+2}{2}\bigg )\bigg ) \bigg |_{a=0,b=1}$$ $$$$ $$ =\dfrac{1}{4}\dfrac{\Gamma(0)\Gamma(1)}{\Gamma(1)}\bigg (\psi\bigg ( 1 \bigg )-\psi\bigg (1\bigg )\bigg )$$ $$$$ Podría alguien ser tan amable de decirme donde me han ido mal? Yo estaría realmente agradecido por tu ayuda. Gracias muy, muy mucho en avanzar!!!!