Saludos estoy tratando de evaluar $$I=\int_0^1 \frac{\ln x\arctan(ax)}{1+b^2x^2}dx$$ Where $un$ and $b$ are positive numbers. My try was to derivate the integral with respect to $un$ in order to get: $$I'(a)=\int_0^1 \frac{\ln x}{(1+a^2x^2)(1+b^2x^2)}dx=\frac{1}{a^2-b^2}\left(\int_0^1\frac{a^2\ln x}{1+a^2x^2}dx-\int_0^1\frac{b^2\ln x}{1+b^2x^2}dx\right)$$ expanding into geometric series using: $$\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^nx^n$$ $$I'(a)=\frac{1}{a^2-b^2}\left(a^2\sum_{n=0}^{\infty}(-1)^na^{2n}\int_0^1x^{2n}\ln xdx-b^2\sum_{n=0}^{\infty}(-1)^nb^{2n}\int_0^1x^{2n}\ln xdx\right)$$ Using the following relation:$$I(k)=\int_0^1x^{2k}dx=\frac{1}{2k+1}\rightarrow I'(k)=\int_0^1 x^{2k}\ln xdx=\frac{-2}{(2k+1)^2}$$ gives: $$I'(a)=\frac{1}{a^2-b^2}\left(-2a\sum_{n=0}^{\infty}(-1)^n\frac{a^{2n+1}}{(2n+1)^2}+2b\sum_{n=0}^{\infty}(-1)^n\frac{b^{2n+1}}{(2n+1)^2}\right)$$ $$I'(a)=\frac{2}{a^2-b^2}\left(b\sin b-a\sin a\right)$$ And finally $$I=I(a)=2\int \frac{b\sin b- a\sin a}{a^2-b^2}da$$ Ahora estoy atascado, podría usted ayudarme a terminar esto? Y tengo los mismos errores?
Edit: Con el error señalado en el apartado de comentarios el resultado es: $$I'(a)=\frac{2}{a^2-b^2}\left(\sum_{n=1}^{\infty}(-1)^n\frac{a^{2n}}{(2n)^2}-\sum_{n=1}^{\infty}(-1)^n\frac{b^{2n}}{(2n)^2}\right)=\frac{1}{2}\frac{1}{a^2-b^2}(Li_2(-a^2)-Li_2(-b^2))$$