$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Tenga en cuenta que \begin{align} \pars{{p \over q} = z \implies \left\{\begin{array}{lcl} \ds{p + q \over q} & \ds{=} & \ds{z + 1} \\[1mm] \mbox{and}&& \\[1mm] \ds{p - q \over q} & \ds{=} & \ds{z - 1} \end{array}\right.} \N - implica \Nbbx {p \N sobre q} = z \N - implica {p + q \N sobre p - q} = {z + 1 sobre z - 1} {etiqueta{1} {etiqueta{1} \fin {align}
Entonces, \begin{align} &\arctan\pars{\root{1 + x^{2}} - \root{1 - x^{2}} \over \root{1 + x^{2}} + \root{1 - x^{2}}} = \alpha \implies {\root{1 + x^{2}} - \root{1 - x^{2}} \over \root{1 + x^{2}} + \root{1 - x^{2}}} = \tan\pars{\alpha} \end{align}
Con la identidad \eqref {1}:
\begin{align} &{2\root{1 + x^{2}} \over -2\root{1 - x^{2}}} = {\tan\pars{\alpha} + 1 \over \tan\pars{\alpha} - 1} \implies {1 + x^{2} \over 1 - x^{2}} = \bracks{\tan\pars{\alpha} + 1 \over \tan\pars{\alpha} - 1}^{2} \\[5mm] \stackrel{\mrm{see}\ \eqref{1}}{\implies}\,\,\ & {2 \over 2x^{2}} = {\braces{\bracks{\tan\pars{\alpha} + 1}/ \bracks{\tan\pars{\alpha} - 1}}^{\,2} + 1 \over \braces{\bracks{\tan\pars{\alpha} + 1}/ \bracks{\tan\pars{\alpha} - 1}}^{\,2} - 1} = {2\tan^{2}\pars{\alpha} + 2 \over 4\tan\pars{\alpha}} \\[5mm] \implies &\ x^{2} = {2\tan\pars{\alpha} \over \tan^{2}\pars{\alpha} + 1} = {2\tan\pars{\alpha} \over\sec^{2}\pars{\alpha}} = 2\sin\pars{\alpha}\cos\pars{\alpha} \implies \bbx{x^{2} = \sin\pars{2\alpha}} \end{align}