Deje A ser una matriz con valores propios λ1,...λn. A continuación, se eλ1,...eλn autovalores de a eA? Aquí, eA=I+A+A22!+...Akk!+...
Respuesta
¿Demasiados anuncios?
mathreadler
Puntos
3517
Si A es diagonalizable, entonces puede ser escrito A=SDS−1, luego Ak=(SDS−1)k=(SDS−1)k−2(SDS−1)(SDS−1) where we see that DS−1SD in the middle can be simplified to D2 and then by induction we can show that k=SDkS−1 and as D contains the λi on the diagonal then they themselves will be powered by k. Then you see that for each eigenvalue each term will become λikk! and that series must be eλi.