Problema
Evaluar $$\lim\limits_{x \to 0} \frac{x-\sin\sin\cdots\sin x}{x^3},$$where $\sin\sin\cdots\sin x$ denota función del seno compuesto n veces .
Solución
Considere aplicar la fórmula de Taylor con la orden de 3 $x=0$. Podemos obtener $$fn(x)=\sin\sin\cdots\sin x=x-\frac{n}{6}x^3+\mathcal{O}(x^3).\tag{}$$ To prove this, we can apply the mathematical induction. Let $n = 1, $ then $$f(x)=\sin x=x-\frac{1}{6}x^3+\mathcal{O}(x^3),$$ It's true and shows that $ () $ holds for $n = 1 $. Assume that $ () $ holds for $n = k $. Then $$\begin{align}f{k+1}(x)&=\sin(fk(x))\&=x-\frac{k}{6}x^3+\mathcal{O}(x^3)-\frac{1}{6}\left(x-\frac{k}{6}x^3+\mathcal{O}(x^3)\right)^3+\mathcal{O}(x^3)\&=x-\frac{k+1}{6}x^3+\mathcal{O}(x^3)\end{align}.$$ This shows that $ () $ holds for $n = k +1 $. As a result, $ (*) $ holds for all $n=1,2,\cdots.$ ahora, vamos a abordar el problema. $$\lim\limits{x \to 0} \frac{x-\sin\sin\cdots\sin x}{x^3}=\lim\limits_{x \to 0} \dfrac{x-\left(x-\dfrac{n}{6}x^3+\mathcal{O}(x^3)\right)}{x^3}=\frac{n}{6}.$$
Por favor corregirme si estoy equivocado. Espero ver otras soluciones. Gracias.