Por favor me ayudan a punto mi error:
Tengo una ecuación $$(u(x)^{-2} + 4u'(x)^2)^{\frac{1}{2}} - u'(x)\frac{d}{du'}(u(x)^{-2} + 4u'(x)^2)^{\frac{1}{2}} = k$$ where $k$ es una constante.
Estoy bastante seguro de que si me tome $u(x) = \sqrt{y(x)}$ me gustaría tener la brachistochrone ecuación, por lo tanto estoy esperando un cicloides ecuación si dejo $u(x) = \sqrt{y(x)}$ en el resultado, pero yo no puedo hacerlo :(
Mis trabajos son como sigue: $$u(x)^{-2} + 4u'(x)^2- 4u'(x)^2 = k \times (u(x)^{-2} + 4u'(x)^2)^{\frac{1}{2}}$$ $$\implies u(x)^{-4} = k^2 \times (u(x)^{-2} + 4u'(x)^2)$$ $$\implies u'(x)= \frac{1}{2k}\sqrt{u(x)^{-4} - k^2u(x)^{-2}}$$ $$\implies \int \frac{1}{u \sqrt{u^2 - k^2}} du = \int \frac{1}{2k} dx$$ Cambio de variable: vamos a $v = \frac{u}{k}$ $$\implies \int \frac{1}{v \sqrt{v^2 - 1}} dv = \frac{x+a}{2}$$, where $una$ es una constante $$\implies \operatorname{arcsec}(v) = \frac{x+a}{2} $$ $$\implies \operatorname{arcsec}\left(\frac{\sqrt{y}}{k}\right) = \frac{x+a}{2}$$ el que no parece describir un cicloides...
Ayuda sería muy apreciada! Gracias.