prueba: para cualquier $\xi\in(0,1/3),\eta\in(2/3,1)$ entonces hay exsit $\lambda\in(\xi,\eta)$ ,tal $$|f'(\lambda)|=\left|\dfrac{f(\eta)-f(\xi)}{\eta-\xi}\right|\le 3|f(\xi)|+3|f(\eta)|$$ por lo que para cualquier número real $x\in(0,1)$ ,tienen $$|f'(x)|=|f'(\lambda)+\int_{\lambda}^{x}f''(t)dt|\le 3|f(\xi)|+3|f(\eta)|+\int_{0}^{1}|f''(t)|dt$$ así que $$\int_{2/3}^{1}\int_{0}^{1/3}|f'(x)|d\xi d\eta=\int_{2/3}^{1}\int_{0}^{1/3}\left(3|f(\xi)|+3|f(\eta)|+\int_{0}^{1}|f''(t)|dt\right)d\xi d\eta$$ $$\Longrightarrow \dfrac{1}{9}|f'(x)|\le\int_{0}^{\frac{1}{3}}|f(\xi)|d\xi+\int_{\frac{2}{3}}^{1}|f(\eta)|d\eta+\dfrac{1}{9}\int_{0}^{1}|f''(t)|dt<\int_{0}^{1}|f(t)|dt+\dfrac{1}{9}\int_{0}^{1}|f''(t)|dt$$ así que $$|f'(x)|\le 9\int_{0}^{1}|f(t)|dt+\int_{0}^{1}|f''(t)|dt,x\in[0,1]$$
así que $$\int_{0}^{1}|f'(x)|dx\le 9\int_{0}^{1}|f(x)|dx+\int_{0}^{1}|f''(x)|dx$$