Identidad 1: Obsérvese por la fórmula del producto de la serie de potencias esta identidad $$ \sum_{n = 0}^{\infty} \frac{F_{n}x^{n}}{n!} + e^x\sum_{n = 0}^{\infty} \frac{F_{n}(-x)^{n}}{n!} = 0 $$ se puede escribir
$$\sum_{n = 0}^{\infty} \frac{F_{n}x^{n}}{n!} + \sum_{n = 0}^{\infty}\left(\sum_{k=0}^n\binom{n}{k}\frac{F_{k}(-1)^{k}}{k!}\frac{1}{(n-k)!}\right)x^n = 0$$
Así que tendrías que mostrar para todos $n$ $$ \frac{F_{n}}{n!}=\sum_{k=0}^n\binom{n}{k}\frac{F_{k}(-1)^{k+1}}{n!} $$ lo que simplifica
$$ F_{n}=\sum_{k=0}^n\binom{n}{k}F_{k}(-1)^{k+1} $$
Por desgracia, no he podido demostrarlo sin la fórmula de Binet: $F_k=\dfrac{\varphi^k-\varphi^{-k}}{\varphi-\varphi^{-1}}$ . Así que en realidad es una versión peor de la prueba de iqcd, pero aquí está de todos modos.
$$ \begin{align} \sum_{k=0}^n\binom{n}{k}F_{k}(-1)^{k+1} &=\sum_{k=0}^n\binom{n}{k}(-1)^{k+1}\frac{\varphi^k-\varphi^{-k}}{\varphi-\varphi^{-1}}\\ &=\frac{1}{\varphi-\varphi^{-1}}\sum_{k=0}^n\binom{n}{k}(-1)^{k+1}\varphi^k-\sum_{k=0}^n\binom{n}{k}(-1)^{k+1}\varphi^{-k}\\ &=\frac{1}{\varphi-\varphi^{-1}}\sum_{k=0}^n\binom{n}{k}(-\varphi^{-1})^k-\sum_{k=0}^n\binom{n}{k}(-\varphi)^{k}\\ &= \frac{1}{\varphi-\varphi^{-1}}[(1-\varphi^{-1})^n-(1-\varphi)^n]\\ &= \frac{1}{\varphi-\varphi^{-1}}[(\varphi)^n-(\varphi^{-1})^n]\\ &= F_n \end{align} $$
Esa penúltima línea es porque para la proporción áurea $\varphi$ tenemos $1-\varphi=\varphi^{-1}$ de manera similar $1-\varphi^{-1}=\varphi$ .