Echa un vistazo a los siguientes enlaces:
- https://www.math.hmc.edu/putnam/
- Estudiar para el examen Putnam
- http://www.quora.com/What-is-the-best-way-to-prepare-for-the-Putnam-Competition
- http://web.unbc.ca/~bluskovi/teaching/putnam/putnam.html
- https://answers.yahoo.com/question/index?qid=20100424024154AAxsocy
Puede encontrar buenos libros repartidos por los enlaces. Para un enlace que enumera las mejores referencias allí sin ningún desorden, haga clic aquí: http://www.math.illinois.edu/~hildebr/putnam/resources.html
Para retransmitir una parte del contenido del enlace anterior:-
[Beginner] A. Gardiner, The Mathematical Olympiad Handbook. The first part
of this book contains a brief, but very handy collection of useful tools from
algebra, geometry, number theory, and other areas. (The "Beginner" rating
applies to this part. The second part, containing problems from the British
Mathematical Olympiad, is much more challenging.)
_
[Beginner-Intermediate] E. Lozansky and C. Rousseau, Winning solutions, A good
introduction to some useful background material from number theory, algebra,
and combinatorics, and to problem-solving techniques.
_
[Beginner-Advanced] Arthur Engel, Problem solving strategies, A huge (1300+)
collection of problems, with solutions, grouped by subject and proof technique.
The problems range from easy to extremely challenging.
_
[Intermediate-Advanced] Loren Larson, Problem solving through problems, A
systematic treatment of problem-solving techniques, illustrated by Putnam level
problems. Considerably more advanced than Lozansky/Rousseau, with the main
focus on techniques rather than theorems.
_
[Intermediate-Advanced] Paul Zeitz, The Art and Craft of Problem Solving.,
An excellent book for self-study for more advanced students. Problems are
grouped by technique and by subject.
_
[Advanced] D.J. Newman, A problem seminar. A collection of 100+ carefully
selected--and quite challenging--problems, with hints and solutions.
_
[Advanced] R. Gelca and T. Andreescu, Putnam and Beyond. At 800 pages,
with 1100 problems, all with complete solutions, this is by far the largest
and most comprehensive Putnam training book. The level is fairly advanced
and probably too much for all but the most experienced Putnam students.
Además, una recomendación personal incluye http://www.amazon.com/The-Art-Problem-Solving-Vol/dp/0977304582 que, como estudiante de décimo grado, encuentro muy interesante para resolver problemas de {¡Acabo de recibir hoy Principios de Análisis Matemático!)
Por último, me gustaría decir que, por favor, eche un vistazo a los problemas dispersos por Internet en sitios como AOPS y MSE. Te deseo lo mejor para tus estudios; ¡espero que te diviertas!
0 votos
Ver: math.stackexchange.com/questions/213609/
0 votos
Y math.stackexchange.com/questions/305700/ y math.stackexchange.com/questions/40181/
0 votos
@user62029 y Ama, a ver si mi respuesta es lo suficientemente completa. ¡Y sí, los libros de la lista que has hecho son todos buenos!
0 votos
Ver: math.stackexchange.com/a/2991734/32209