La suma de $$S=\sum_{r=1}^{n} \frac{\cos (2rx)}{\sin((2r+1)x \sin((2r-1)x}$$
Yo:
$$S=\sum_{r=1}^{n} \frac{\cos (2rx) \sin((2r+1)x-(2r-1)x)}{\sin 2x \:\sin((2r+1)x \sin((2r-1)x}$$
$$S=\sum_{r=1}^{n} \frac{\cos (2rx) \left(\sin((2r+1)x \cos (2r-1)x-\cos(2r-1)x)\sin(2r+1)x\right)}{\sin 2x \:\sin((2r+1)x \sin((2r-1)x}$$
$$S=\sum_{r=1}^n \frac{\cos(2rx)}{\sin 2x}\left(\cot(2r-1)x-\cot(2r+1)x\right)$$
ninguna idea de por aquí?