Considere las siguientes producciones $$\prod_{n=1}^{\infty}\frac{1+\frac{1}{n}}{1+\frac{1}{n+x}}$$ y $$\prod_{n=1}^{\infty}\frac{(1+\frac{1}{n})^n}{(1+\frac{1}{n+x})^{n+x}}$$ Sé que los de arriba son convergentes. Puede alguien encontrar el límite de estos productos?
Respuestas
¿Demasiados anuncios?$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,} \newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}} \newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\Large\left. a\right)}$
\begin{align} \prod_{n = 1}^{N}{1 + 1/n \over 1 + 1/\pars{n+x}} & = {\prod_{n = 1}^{N}\pars{n + 1} \over \prod_{n = 1}^{N}n}\, {\prod_{n = 1}^{N}\pars{n + x} \over \prod_{n = 1}^{N}\pars{n + x + 1}} = {\prod_{n = 2}^{N + 1}n \over \prod_{n = 1}^{N}n}\, {\prod_{n = 1}^{N}\pars{n + x} \over \prod_{n = 2}^{N + 1}\pars{n + x}} \\[5mm] & = \pars{N + 1}\, {\pars{1 + x}\prod_{n = 2}^{N}\pars{n + x} \over \pars{N + 1 + x}\prod_{n = 2}^{N}\pars{n + x}} \,\,\,\stackrel{\mrm{as}\ N\ \to\ \infty}{\to}\,\,\,\bbx{1 + x} \end{align}
$\ds{\Large\left. b\right)}$ $\ds{\prod_{n = 1}^{\infty}{\pars{1 + 1/n}^{n} \over \bracks{1 + 1/\pars{n + x}}^{n + x}}:\ {\Large ?}}$.
\begin{align} \prod_{n = 1}^{N}\pars{1 + {1 \over n + a}}^{n + a} & = {\prod_{n = 1}^{N}\pars{n + 1 + a}^{n + a} \over \prod_{n = 1}^{N}\pars{n + a}^{n + a}} = {\prod_{n = 2}^{N + 1}\pars{n + a}^{n - 1 + a} \over \prod_{n = 1}^{N}\pars{n + a}^{n + a}} \\[5mm] & = {1 \over \prod_{n = 2}^{N + 1}\pars{n + a}}\, {\pars{N + 1 + a}^{N + 1 + a}\prod_{n = 2}^{N}\pars{n + a}^{n + a} \over \pars{1 + a}^{1 + a}\prod_{n = 2}^{N}\pars{n + a}^{n + a}} \\[5mm] & = {1 \over \pars{2 + a}^{\overline{N}}}\, {N^{N + 1 + a} \over \pars{1 + a}^{1 + a}}\, \pars{1 + {1 + a \over N}}^{N + 1 + a} \\[5mm] & = {\Gamma\pars{2 + a} \over \Gamma\pars{2 + a + N}}\, {N^{N + 1 + a} \over \pars{1 + a}^{1 + a}}\, \pars{1 + {1 + a \over N}}^{N + 1 + a} \\[5mm] & \stackrel{\mrm{as}\ N\ \to\ \infty}{\sim}\,\,\, {\Gamma\pars{2 + a}\expo{1 + a} \over \pars{1 + a}^{1 + a}}\, {N^{N + 1 + a} \over \Gamma\pars{2 + a + N}} \end{align} A continuación, \begin{align} \prod_{n = 1}^{N}{\pars{1 + 1/n}^{n} \over \bracks{1 + 1/\pars{n + x}}^{n + x}} & \stackrel{\mrm{as}\ N\ \to\ \infty}{\sim}\,\,\, {\Gamma\pars{2}\expo{}N^{N + 1}/\Gamma\pars{2 + N} \over \Gamma\pars{2 + x}\expo{1 + x}N^{N + 1 + x}/ \bracks{\pars{1 + x}^{1 + x}\,\Gamma\pars{2 + x + N}}} \\[5mm] & = {\expo{-x}\pars{1 + x}^{1 + x} \over \Gamma\pars{2 + x}}\, {\pars{N + 1 + x}! \over N^{x}\pars{N + 1}!} \\[5mm] & \stackrel{\mrm{as}\ N\ \to\ \infty}{\sim}\,\,\, {\expo{-x}\pars{1 + x}^{1 + x} \over \Gamma\pars{2 + x}}\, {\root{2\pi}\pars{N + 1 + x}^{N + 3/2 + x}\expo{-\pars{N + 1 + x}} \over N^{x}\bracks{\root{2\pi}\pars{N + 1}^{N + 3/2}\expo{-\pars{N + 1}}}} \\[5mm] & = {\expo{-x}\pars{1 + x}^{1 + x} \over \Gamma\pars{2 + x}}\, {N^{N + 3/2 + x}\bracks{1 + \pars{1 + x}/N}^{N + 3/2 + x} \over N^{x}\bracks{N^{N + 3/2}\,\pars{1 + 1/N}^{N + 3/2}}}\,\expo{-x} \\[5mm] & \stackrel{\mrm{as}\ N\ \to\ \infty}{\sim}\,\,\, {\expo{-x}\pars{1 + x}^{1 + x} \over \Gamma\pars{2 + x}}\, {\expo{1 + x} \over \expo{}}\,\expo{-x} \end{align}
$$ \bbx{\prod_{n = 1}^{\infty}{\pars{1 + 1/n}^{n} \over \bracks{1 + 1/\pars{n + x}}^{n + x}} = {\expo{-x}\pars{1 + x}^{1 + x} \\Gamma\pars{2 + x}}} $$
Para la primera, reescribir el producto:
\begin{equation*} \begin{split} \prod_{n=1}^{\infty} \frac{(n+1)(n+x)}{n(n+x+1)}& = \frac{(1+1)(1+x)}{1(1+x+1)} \times\frac{(2+1)(2+x)}{2(2+x+1)} \times \frac{(3+1)(3+x)}{3(3+x+1)}\times ...\\ & = \frac{2(1+x)}{1(2+x)} \times\frac{3(2+x)}{2(3+x)} \times \frac{4(3+x)}{3(4+x)}\times ...\\ & = (1+x). \end{split} \end{ecuación*}
Para el segundo, reescribir el producto como \begin{equation*} \begin{split} \prod_{n=1}^{\infty} \frac{(n+1)^n(n+x)^{n+x}}{n^n(n+x+1)^{n+x}} & = \frac{(1+1)^1(1+x)^{1+x}}{1^1(1+x+1)^{1+x}} \times \frac{(2+1)^2(2+x)^{2+x}}{2^2(2+x+1)^{2+x}}\times \frac{(3+1)^3(3+x)^{3+x}}{3^3(3+x+1)^{3+x}}\times ...\\ & = \frac{2(1+x)^{1+x}}{(2+x)^{1+x}} \times \frac{3^2(2+x)^{2+x}}{2^2(3+x)^{2+x}}\times \frac{4^3(3+x)^{3+x}}{3^3(4+x)^{3+x}}\times ...\\ & = (1+x)^{1+x} \times \frac{(2+x)}{2}\times \frac{(3+x)}{3}\times ...\\ & = (1+x)^{1+x}\prod_{n=2}^{\infty}\frac{n+x}{n}. \end{split} \end{ecuación*} El producto es igual a cero para $x<0$, es igual a$1$$x=0$, y para $x>0$ el producto es divergente.
Tenga en cuenta que para $x = k \in N$
$$ \prod_{n=1}^{\infty}\frac{(1+\frac{1}{n})^n}{(1+\frac{1}{n+x})^{n+x}}=\frac{1}{e}\prod_{n=1}^{k}\left(1+\frac{1}{n}\right)^n $$
por la cancelación. Así, por $x > 0$ tenemos $\prod_{n=1}^{\infty}\frac{(1+\frac{1}{n})^n}{(1+\frac{1}{n+x})^{n+x}}\le M(x)$
Este resultado puede ser ampliado con la contribución de $\Gamma$ funciones.