$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\Large\left.a\right)}$
\begin{align}
&\bbox[13px,#ffd]{\int_{0}^{1}{x^{a - 1}\pars{1 - x}^{b - 1} \over \mrm{B}\pars{a,b}}\,x\ln\pars{x}\,\dd x} =
\left.{1 \over \mrm{B}\pars{a,b}}\,\partiald{}{\nu}
\int_{0}^{1}x^{a + \nu}\pars{1 - x}^{b - 1}\,\dd x\,\right\vert_{\ \nu\ =\ 0}
\\[5mm] = &\
\left.{1 \over \mrm{B}\pars{a,b}}\,\partiald{\mrm{B}\pars{a + \nu + 1,b}}{\nu}
\,\right\vert_{\ \nu\ =\ 0} =
\left.{1 \over \mrm{B}\pars{a,b}}\,\partiald{}{\nu}
{\Gamma\pars{a + \nu + 1}\Gamma\pars{b} \over \Gamma\pars{a + \nu + 1 + b}}
\,\right\vert_{\ \nu\ =\ 0}
\\[5mm] = &\
{\Gamma\pars{b} \over
\Gamma\pars{a}\Gamma\pars{b}/\Gamma\pars{a + b}}
\bracks{\Gamma\pars{1 + a}\,{H_{a} - H_{a + b} \over \Gamma\pars{1 + a + b}}}
\\[5mm] = &\
{\Gamma\pars{a + b} \over
\Gamma\pars{a}}\bracks{%
a\,\Gamma\pars{a}\,{H_{a} - H_{a + b} \over \pars{a + b}\Gamma\pars{a + b}}} =
\bbx{{a \over a + b}\pars{H_{a} - H_{a + b}}}
\end{align}
\begin{align}
&\bbox[13px,#ffd]{\int_{0}^{1}{x^{a - 1}\pars{1 - x}^{b - 1} \over \mrm{B}\pars{a,b}}
\,{1 \over x + 1}\,\dd x} =
{1 \over \mrm{B}\pars{a,b}}\int_{0}^{1}x^{a - 1}\pars{1 - x}^{b - 1}
\bracks{1 - \pars{-1}x}^{\,-1}\,\dd x
\\[5mm] = &\
{1 \over \mrm{B}\pars{a,b}}\bracks{%
\mrm{B}\pars{a,b}\,\mbox{}_{2}\mrm{F}_{1}\pars{1,a;a + b;-1}} =
\bbx{\mbox{}_{2}\mrm{F}_{1}\pars{1,a;a + b;-1}}\label{1}\tag{1}
\end{align}
\eqref{1} se evalúa como una 'Euler Escriba la expresión para la Función Hipergeométrica: Se da en
en este enlace.
$\ds{\Large\left.b\right)}$
\begin{align}
&\bbox[13px,#ffd]{\int_{0}^{\infty}{\beta^{\alpha} \over \Gamma\pars{\alpha}}
\,y^{\alpha - 1}\expo{-\beta y}y\ln\pars{y}\,\dd y} =
{\beta^{\alpha} \over \Gamma\pars{\alpha}}
\left.\partiald{}{\nu}\int_{0}^{\infty}y^{\alpha + \nu}\expo{-\beta y}\,\dd y
\,\right\vert_{\ \nu\ =\ 0}
\\[5mm] = &\
{\beta^{\alpha} \over \Gamma\pars{\alpha}}
\partiald{}{\nu}\bracks{{1 \over \beta^{\alpha + \nu + 1}}
\int_{0}^{\infty}y^{\alpha + \nu}\expo{-y}\,\dd y}_{\ \nu\ =\ 0} =
{\beta^{\alpha} \over \Gamma\pars{\alpha}}
\partiald{}{\nu}\bracks{{\Gamma\pars{\alpha + \nu + 1} \over
\beta^{\alpha + \nu + 1}}}_{\ \nu\ =\ 0}
\\[5mm] = &\
{\beta^{\alpha} \over \Gamma\pars{\alpha}}\braces{%
-\beta^\pars{-1 - \alpha}\,\Gamma\pars{1 + \alpha}\bracks{\ln\pars{\beta} - H_{\alpha} + \gamma}} =
\bbx{{\alpha \over \beta}\bracks{H_{\alpha} - \gamma - \ln\pars{\beta}}}
\end{align}