Una alternativa es una exageración con un poco de teoría de la medida. Lamentablemente, no conozco los nombres de los teoremas y los objetos utilizados (no en mi idioma y no en inglés). Si alguien la tiene, por favor, edite mi respuesta como mejor le parezca.
En primer lugar, tenga en cuenta que $$\displaystyle\int \limits_{-\infty}^{\infty}\displaystyle\int \limits_{-\infty}^{\infty}\displaystyle\int \limits_{-\infty}^{\infty} \dfrac{1}{(1+x^2+y^2+z^2)^2}\mathrm dx \,\mathrm dy \,\mathrm dz=\iiint \limits_{\Bbb R^3\setminus\{0_{\Bbb R^3}\}}\dfrac{1}{(1+x^2+y^2+z^2)^2}\mathrm dx \,\mathrm dy \,\mathrm dz,$$
a continuación, el cambio de uso de variables y algo que se traduce en una generalizada coordenadas polares para obtener
$$\iiint \limits_{\Bbb R^3\setminus\{0_{\Bbb R^3}\}}\dfrac{1}{(1+x^2+y^2+z^2)^2}\mathrm dx \,\mathrm dy \,\mathrm dz=\iint \limits_{]0,+\infty[\times S_2} \dfrac{t^2}{\left(1+(tx)^2+(ty)^2+(tz)^2\right)^2}\mathrm dt \,\mathrm d\mu_{S_2}(x,y,z).$$
Ahora, $$\displaystyle \begin{align} \iint \limits_{]0,+\infty[\times S_2} \dfrac{t^2\mathrm dt \,\mathrm d\mu_{S_2}(x,y,z)}{\left(1+(tx)^2+(ty)^2+(tz)^2\right)^2}&=\iint \limits_{]0,+\infty[\times S_2} \dfrac{t^2\mathrm dt \,\mathrm d\mu_{S_2}(x,y,z)}{\left(1+t^2(x^2+y^2+z)^2\right)^2}\\
&=\iint \limits_{]0,+\infty[\times S_2} \dfrac{t^2\mathrm dt \,\mathrm d\mu_{S_2}(x,y,z)}{\left(1+t^2\right)^2}\\
&=\underbrace{\mu _{S_2}(S_2)}_{\large 4\pi}\int \limits_{]0,+\infty[} \dfrac{t^2}{\left(1+t^2\right)^2}\mathrm dt\\
&=4\pi\cdot \dfrac \pi 4=\pi ^2\end{align}$$