Sólo para estar completa,
aquí es todo
He conseguido hasta ahora,
incluyendo dos recurrencias
al final
que no parecen ser
de mucho uso.
De acuerdo a Wolfy,
$
W_{1,1}
=1\\
W_{1,2}
=\dfrac{\pi^2}{6}-1\\
W_{2, 1}
=2-\dfrac{\pi^2}{6}\\
W_{2, 2}
=\dfrac{\pi^2}{3}-3\\
W_{1, 3}
=\zeta(3)+1-\dfrac{\pi^2}{6}\\
W_{3, 1}
=-\zeta(3)-\dfrac{\pi^2}{6}+3\\
W_{2, 3}
=\zeta(3)+4-\dfrac{\pi^2}{2}\\
W_{3,2}
=\zeta(3)+\dfrac{\pi^2}{2}-6\\
W_{3, 3}
=10-\pi^2\\
$
$W_{0, n}
=\zeta(n)
$.
$W_{m, 0}
=\zeta(m)-1
$.
$\begin{array}\\
W_{m+1, n+1}
&=\sum_{k=1}^{\infty} \frac{1}{(k+1)^{m+1}k^{n+1}}\\
&=\sum_{k=1}^{\infty} \frac{1}{(k+1)k(k+1)^mk^{n}}\\
&=\sum_{k=1}^{\infty} \frac{1}{(k+1)^mk^{n}}(\frac1{k}-\frac1{k+1})\\
&=\sum_{k=1}^{\infty} \frac{1}{(k+1)^mk^{n+1}}-\sum_{k=1}^{\infty} \frac{1}{(k+1)^{m+1}k^{n}}\\
&=W_{m, n+1}-W_{m+1, n}\\
\end{array}
$
o
$W_{m, n}
=W_{m-1, n}-W_{m, n-1}
$.
$m=0$:
$W_{1, n+1}\\
=W_{0, n+1}-W_{1, n}\\
=\zeta(n+1)-W_{1, n}\\
=\zeta(n+1)-\zeta(n)+W_{1, n-1}\\
=...\pm\zeta(2)\mp 1\\
$
así
$W_{1,n}
=\sum_{k=0}^{n-2} (-1)^k\zeta(n-k)
+(-1)^{n-1}
$.
$n=0$:
$W_{m+1, 1}\\
=W_{m, 1}-W_{m+1, 0}\\
=W_{m, 1}-\zeta(m+1)+1\\
=-\zeta(m+1)+1+W_{m, 1}\\
=-\zeta(m+1)-\zeta(m)+2+W_{m-1, 1}\\
=...-\zeta(2)+m-1+W_{1, 1}\\
$
así
$W_{m, 1}
=-\sum_{k=0}^{n-2} \zeta(n-k)
+m
$.
De verificación:
$(3, 3)\\
=(2, 3)-(3, 2)\\
=((1, 3)-(2,2))-((2,2)-(3, 1))\\
=(1, 3)-2(2, 2)+(3, 1)\\
=(z(3) z(2)+1)-2((1, 2)-(2, 1))+(-z(3) z(2)+3)\\
=-2z(2)+4)-2((1, 2)-(2, 1))\\
=-2z(2)+4)-2(z(2)-1-(-z(2)+2)\\
=-6z(2)+10\\
=-\pi^2+10\\
$
$\begin{array}\\
W_{m, n}-\zeta(m+n)
&=\sum_{k=1}^{\infty} (\frac{1}{(k+1)^mk^{n}}-\frac1{k^{m+n}})\\
&=\sum_{k=1}^{\infty} \frac1{k^n}(\frac{1}{(k+1)^m}-\frac1{k^{m}})\\
&=-\sum_{k=1}^{\infty} \frac1{k^n}(\frac{(k+1)^m-k^m}{(k+1)^mk^{m}})\\
&=-\sum_{k=1}^{\infty} \frac1{(k+1)^mk^{m+n}}\sum_{j=0}^{m-1}\binom{m}{j}k^j\\
&=-\sum_{j=0}^{m-1}\binom{m}{j}\sum_{k=1}^{\infty} \frac1{(k+1)^mk^{m+n-j}}\\
&=-\sum_{j=0}^{m-1}\binom{m}{j}W_{m, m+n-j}\\
\end{array}
$
así,
el aislamiento de la
$j=0$ plazo,
$W_{m, m+n}\\
=\zeta(m+n)-W_{m, n}-\sum_{j=1}^{m-1}\binom{m}{j}W_{m, m+n-j}\\
=\zeta(m+n)-W_{m, n}-\sum_{j=1}^{m-1}\binom{m}{j}W_{m, n+j}\\
=\zeta(m+n)-\sum_{j=0}^{m-1}\binom{m}{j}W_{m, n+j}
$.
Del mismo modo,
para $n$
$\begin{array}\\
W_{m, n}-\zeta(n)
&=\sum_{k=1}^{\infty} (\frac{1}{(k+1)^mk^{n}}-\frac1{k^{n}})\\
&=\sum_{k=1}^{\infty} \frac1{k^n}(\frac{1}{(k+1)^m}-1)\\
&=-\sum_{k=1}^{\infty} \frac1{k^n}(\frac{(k+1)^m-1}{(k+1)^m})\\
&=-\sum_{k=1}^{\infty} \frac1{(k+1)^mk^{n}}\sum_{j=1}^{m}\binom{m}{j}k^j\\
&=-\sum_{j=1}^{m}\binom{m}{j}\sum_{k=1}^{\infty} \frac1{(k+1)^mk^{n-j}}\\
&=-\sum_{j=1}^{m}\binom{m}{j}W_{m, n-j}\\
\end{array}
$
así que
$W_{m, n}
=\zeta(n)-\sum_{j=1}^{m}\binom{m}{j}W_{m, n-j}
$.