4 votos

Es este Grupo de Galois es isomorfo a $S_5$

Queremos $\text{Gal}_\mathbb{Q}(f) \cong S_5$ donde $f = x^5 + 2x + 2$. Este polinomio tiene 5 raíces, uno real y 4 imaginario, llamarlos $a,b_1,b_2,c_1,c_2$ donde $b_1, b_2$ $c_1, c_2$ son conjugados. A continuación,$|\text{Gal}_\mathbb{Q}(f)| = [\mathbb{Q}(a,b_1,c_1): \mathbb{Q}(a, b_1)][\mathbb{Q}(a, b_1): \mathbb{Q}(a)][\mathbb{Q}(a): \mathbb{Q}]$. Creo que esto es igual a $2 \times 2 \times 5$, pero no estoy seguro y no estoy seguro de cómo mostrarlo. En este caso, $|\text{Gal}_\mathbb{Q}(f)|=20$ y por lo tanto es isomorfo a un subgrupo de $S_5$ con 20 elementos, que supongo que sería $S_3 \times \mathbb{Z}_2$. Es correcto esto y cómo puedo mostrar que esos son los grados de las extensiones?

3voto

pisco125 Puntos 516

El discriminante de $f=x^5+2x+2$$2^4\times 3637$, que no es un cuadrado. Les presento varias método para calcular el grupo de Galois, todos ellos involucrados algunos cálculos.

1. La reducción del modulo $p$

Modulo $5$ muestra contiene un $4$-ciclo, módulo $13$ muestra contiene un $3$-ciclo, por lo tanto $60$ divide al orden del grupo de Galois, es $S_5$ como se conjeturó.


2. Resolvent

Denotar $x_1,\cdots,x_5$ ser raíces de la ecuación de $x^5+2x+2$, vamos $$\theta_1 = x_1^2 x_2 x_5 + x_1^2 x_3 x_4 + x_2^2 x_1 x_3 + x_2^2 x_4 x_5 + x_3^2 x_1 x_5 + x_3^2 x_2 x_4 + x_4^2 x_1 x_2 + x_4^2 x_3 x_5 + x_5^2 x_1 x_4 + x_5^2 x_2 x_3$$ El estabilizador de la $\theta_1$ bajo la acción de $S_5$ es un grupo de $M$, que tiene orden de $20$ (isomorfo a $C_5\rtimes C_4$). La órbita se compone de seis elementos que denotan ellos por $\{\theta_1, \cdots, \theta_6\}$. Cualquier conjugados de $M$ $S_5$ es el estabilizador de algunos $\theta_i$ (debido a $M$ es auto-normalización en $S_5$).

El sextic $g=(x-\theta_1)\cdots (x-\theta_6)$ ha coeficientes en $\mathbb{Q}$, uno calcula que $$g = x^6+16x^5+160x^4+1280x^3+6400x^2-33616x-283616$$

If the Galois group $G$ is a conjugate subgroup of $M$, then some $\theta_i$ will be in $\mathbb{Q}$. However, it is easily checked that $g$ has no rational root. Thus $G$ cannot be $C_5, D_5$ or $M$. The discriminant tells $G$ is $S_5$.

The following Mathematica code is used for computing $f$:

theta1=x1^2*x2*x5+x1^2*x3*x4+x2^2*x1*x3+x2^2*x4*x5+x3^2*x1*x5+x3^2*x2*x4+x4^2*x1*x2+x4^2*x3*x5+x5^2*x1*x4+x5^2*x2*x3;theta2=theta1/.{x1->x2,x2->x3,x3->x1};theta3=theta1/.{x1->x3,x3->x2,x2->x1};theta4=theta1/.{x1->x2,x2->x1};theta5=theta1/.{x2->x3,x3->x2};theta6=theta1/.{x1->x3,x3->x1};SymmetricReduction[Expand[(x-theta1)(x-theta2)(x-theta3)(x-theta4)(x-theta5)(x-theta6)],{x1,x2,x3,x4,x5},{0,0,0,2,-2}]

Alternatively, you can compute $\theta_i$ to enough accuracy to discern whether they are integers.


3. Splitting of prime ideals

This method is reminiscent to the first. Let $K$ be the normal closure, $\alpha$ be a root of $f$, it is easily seen that $\mathcal{O}_{\mathbb{Q}(\alpha)} = \mathbb{Z}[\alpha]$. Thus, decomposition of $p$ in $\mathbb{Q}(\alpha)$ can be computed modulo $p$.

In $\mathbb{F}_5$, $f$ factors as $$(4 + x) (3 + x + x^2 + x^3 + x^4)$$ hence prime ideals of $K$ lying above $5$ has inertial degree divisible by $4$.

In $\mathbb{F}_{13}$, $f$ factors as $$(3 + x) (5 + x) (1 + 10 x + 5 x^2 + x^3)$$ hence prime ideals of $K$ lying above $13$ has inertial degree divisible by $3$.

Therefore $3$, $4$ and $5$ divides $[K:\mathbb{Q}]=|G|$, the non-square discriminant says $G\cong S_5$.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X