Si el % de lados $a$, $b$ $c$ $\triangle ABC$ están en progresión aritmética, y demostrar que: $$\cos (\dfrac {B-C}{2})=2\sin (\dfrac {A}{2})$ $
Mi intento:
Desde entonces, $a,b,c$ son en AP $$2b=a+c$ $ $$\sin A+\sin C=2\sin B$ $ $$2\sin (\dfrac {A+C}{2}).\cos (\dfrac {A-C}{2})=2\sin B$ $ $$\sin (\dfrac {A+C}{2}).\cos (\dfrac {A-C}{2})=\sin B$ $ $$\sin (\dfrac {A+C}{2}).\cos (\dfrac {A-C}{2})=2.\sin (\dfrac {A+C}{2}).\cos (\dfrac {A+C}{2})$ $ $$2\cos (\dfrac {A+C}{2})=\cos (\dfrac {A-C}{2})$ $