Parece que algunos evidente patrones, probablemente comprobable, en las matrices $Q$ por debajo. El determinante de la matriz diagonal $D$ es el mismo que el determinante de la original $H$
la primera es de 2 por 2, multiplicando por $(2n)! = 4! = 24$
$$ P^T H P = D $$
$$\left(
\begin{array}{rr}
1 & 0 \\
- \frac{ 1 }{ 3 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rr}
12 & 4 \\
4 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rr}
1 & - \frac{ 1 }{ 3 } \\
0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rr}
12 & 0 \\
0 & - \frac{ 1 }{ 3 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rr}
1 & 0 \\
\frac{ 1 }{ 3 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rr}
12 & 0 \\
0 & - \frac{ 1 }{ 3 } \\
\end{array}
\right)
\left(
\begin{array}{rr}
1 & \frac{ 1 }{ 3 } \\
0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rr}
12 & 4 \\
4 & 1 \\
\end{array}
\right)
$$
=================================
3 por 3
$$ P^T H P = D $$
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
- \frac{ 1 }{ 3 } & 1 & 0 \\
\frac{ 1 }{ 20 } & - \frac{ 2 }{ 5 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
360 & 120 & 30 \\
120 & 30 & 6 \\
30 & 6 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & - \frac{ 1 }{ 3 } & \frac{ 1 }{ 20 } \\
0 & 1 & - \frac{ 2 }{ 5 } \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
360 & 0 & 0 \\
0 & - 10 & 0 \\
0 & 0 & \frac{ 1 }{ 10 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
\frac{ 1 }{ 3 } & 1 & 0 \\
\frac{ 1 }{ 12 } & \frac{ 2 }{ 5 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
360 & 0 & 0 \\
0 & - 10 & 0 \\
0 & 0 & \frac{ 1 }{ 10 } \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & \frac{ 1 }{ 3 } & \frac{ 1 }{ 12 } \\
0 & 1 & \frac{ 2 }{ 5 } \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
360 & 120 & 30 \\
120 & 30 & 6 \\
30 & 6 & 1 \\
\end{array}
\right)
$$
=====================
4 por 4
$$ P^T H P = D $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
- \frac{ 1 }{ 3 } & 1 & 0 & 0 \\
\frac{ 1 }{ 20 } & - \frac{ 2 }{ 5 } & 1 & 0 \\
- \frac{ 1 }{ 210 } & \frac{ 1 }{ 14 } & - \frac{ 3 }{ 7 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
20160 & 6720 & 1680 & 336 \\
6720 & 1680 & 336 & 56 \\
1680 & 336 & 56 & 8 \\
336 & 56 & 8 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & - \frac{ 1 }{ 3 } & \frac{ 1 }{ 20 } & - \frac{ 1 }{ 210 } \\
0 & 1 & - \frac{ 2 }{ 5 } & \frac{ 1 }{ 14 } \\
0 & 0 & 1 & - \frac{ 3 }{ 7 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
20160 & 0 & 0 & 0 \\
0 & - 560 & 0 & 0 \\
0 & 0 & \frac{ 28 }{ 5 } & 0 \\
0 & 0 & 0 & - \frac{ 1 }{ 35 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
\frac{ 1 }{ 3 } & 1 & 0 & 0 \\
\frac{ 1 }{ 12 } & \frac{ 2 }{ 5 } & 1 & 0 \\
\frac{ 1 }{ 60 } & \frac{ 1 }{ 10 } & \frac{ 3 }{ 7 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
20160 & 0 & 0 & 0 \\
0 & - 560 & 0 & 0 \\
0 & 0 & \frac{ 28 }{ 5 } & 0 \\
0 & 0 & 0 & - \frac{ 1 }{ 35 } \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & \frac{ 1 }{ 3 } & \frac{ 1 }{ 12 } & \frac{ 1 }{ 60 } \\
0 & 1 & \frac{ 2 }{ 5 } & \frac{ 1 }{ 10 } \\
0 & 0 & 1 & \frac{ 3 }{ 7 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
20160 & 6720 & 1680 & 336 \\
6720 & 1680 & 336 & 56 \\
1680 & 336 & 56 & 8 \\
336 & 56 & 8 & 1 \\
\end{array}
\right)
$$
============
5 por 5
$$ P^T H P = D $$
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
- \frac{ 1 }{ 3 } & 1 & 0 & 0 & 0 \\
\frac{ 1 }{ 20 } & - \frac{ 2 }{ 5 } & 1 & 0 & 0 \\
- \frac{ 1 }{ 210 } & \frac{ 1 }{ 14 } & - \frac{ 3 }{ 7 } & 1 & 0 \\
\frac{ 1 }{ 3024 } & - \frac{ 1 }{ 126 } & \frac{ 1 }{ 12 } & - \frac{ 4 }{ 9 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
1814400 & 604800 & 151200 & 30240 & 5040 \\
604800 & 151200 & 30240 & 5040 & 720 \\
151200 & 30240 & 5040 & 720 & 90 \\
30240 & 5040 & 720 & 90 & 10 \\
5040 & 720 & 90 & 10 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
1 & - \frac{ 1 }{ 3 } & \frac{ 1 }{ 20 } & - \frac{ 1 }{ 210 } & \frac{ 1 }{ 3024 } \\
0 & 1 & - \frac{ 2 }{ 5 } & \frac{ 1 }{ 14 } & - \frac{ 1 }{ 126 } \\
0 & 0 & 1 & - \frac{ 3 }{ 7 } & \frac{ 1 }{ 12 } \\
0 & 0 & 0 & 1 & - \frac{ 4 }{ 9 } \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrrr}
1814400 & 0 & 0 & 0 & 0 \\
0 & - 50400 & 0 & 0 & 0 \\
0 & 0 & 504 & 0 & 0 \\
0 & 0 & 0 & - \frac{ 18 }{ 7 } & 0 \\
0 & 0 & 0 & 0 & \frac{ 1 }{ 126 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
\frac{ 1 }{ 3 } & 1 & 0 & 0 & 0 \\
\frac{ 1 }{ 12 } & \frac{ 2 }{ 5 } & 1 & 0 & 0 \\
\frac{ 1 }{ 60 } & \frac{ 1 }{ 10 } & \frac{ 3 }{ 7 } & 1 & 0 \\
\frac{ 1 }{ 360 } & \frac{ 2 }{ 105 } & \frac{ 3 }{ 28 } & \frac{ 4 }{ 9 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
1814400 & 0 & 0 & 0 & 0 \\
0 & - 50400 & 0 & 0 & 0 \\
0 & 0 & 504 & 0 & 0 \\
0 & 0 & 0 & - \frac{ 18 }{ 7 } & 0 \\
0 & 0 & 0 & 0 & \frac{ 1 }{ 126 } \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
1 & \frac{ 1 }{ 3 } & \frac{ 1 }{ 12 } & \frac{ 1 }{ 60 } & \frac{ 1 }{ 360 } \\
0 & 1 & \frac{ 2 }{ 5 } & \frac{ 1 }{ 10 } & \frac{ 2 }{ 105 } \\
0 & 0 & 1 & \frac{ 3 }{ 7 } & \frac{ 3 }{ 28 } \\
0 & 0 & 0 & 1 & \frac{ 4 }{ 9 } \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrrr}
1814400 & 604800 & 151200 & 30240 & 5040 \\
604800 & 151200 & 30240 & 5040 & 720 \\
151200 & 30240 & 5040 & 720 & 90 \\
30240 & 5040 & 720 & 90 & 10 \\
5040 & 720 & 90 & 10 & 1 \\
\end{array}
\right)
$$
==========================
6 por 6
$$ P^T H P = D $$
$$\left(
\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
- \frac{ 1 }{ 3 } & 1 & 0 & 0 & 0 & 0 \\
\frac{ 1 }{ 20 } & - \frac{ 2 }{ 5 } & 1 & 0 & 0 & 0 \\
- \frac{ 1 }{ 210 } & \frac{ 1 }{ 14 } & - \frac{ 3 }{ 7 } & 1 & 0 & 0 \\
\frac{ 1 }{ 3024 } & - \frac{ 1 }{ 126 } & \frac{ 1 }{ 12 } & - \frac{ 4 }{ 9 } & 1 & 0 \\
- \frac{ 1 }{ 55440 } & \frac{ 1 }{ 1584 } & - \frac{ 1 }{ 99 } & \frac{ 1 }{ 11 } & - \frac{ 5 }{ 11 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrrrr}
239500800 & 79833600 & 19958400 & 3991680 & 665280 & 95040 \\
79833600 & 19958400 & 3991680 & 665280 & 95040 & 11880 \\
19958400 & 3991680 & 665280 & 95040 & 11880 & 1320 \\
3991680 & 665280 & 95040 & 11880 & 1320 & 132 \\
665280 & 95040 & 11880 & 1320 & 132 & 12 \\
95040 & 11880 & 1320 & 132 & 12 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrrrr}
1 & - \frac{ 1 }{ 3 } & \frac{ 1 }{ 20 } & - \frac{ 1 }{ 210 } & \frac{ 1 }{ 3024 } & - \frac{ 1 }{ 55440 } \\
0 & 1 & - \frac{ 2 }{ 5 } & \frac{ 1 }{ 14 } & - \frac{ 1 }{ 126 } & \frac{ 1 }{ 1584 } \\
0 & 0 & 1 & - \frac{ 3 }{ 7 } & \frac{ 1 }{ 12 } & - \frac{ 1 }{ 99 } \\
0 & 0 & 0 & 1 & - \frac{ 4 }{ 9 } & \frac{ 1 }{ 11 } \\
0 & 0 & 0 & 0 & 1 & - \frac{ 5 }{ 11 } \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrrrr}
239500800 & 0 & 0 & 0 & 0 & 0 \\
0 & - 6652800 & 0 & 0 & 0 & 0 \\
0 & 0 & 66528 & 0 & 0 & 0 \\
0 & 0 & 0 & - \frac{ 2376 }{ 7 } & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{ 22 }{ 21 } & 0 \\
0 & 0 & 0 & 0 & 0 & - \frac{ 1 }{ 462 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
\frac{ 1 }{ 3 } & 1 & 0 & 0 & 0 & 0 \\
\frac{ 1 }{ 12 } & \frac{ 2 }{ 5 } & 1 & 0 & 0 & 0 \\
\frac{ 1 }{ 60 } & \frac{ 1 }{ 10 } & \frac{ 3 }{ 7 } & 1 & 0 & 0 \\
\frac{ 1 }{ 360 } & \frac{ 2 }{ 105 } & \frac{ 3 }{ 28 } & \frac{ 4 }{ 9 } & 1 & 0 \\
\frac{ 1 }{ 2520 } & \frac{ 1 }{ 336 } & \frac{ 5 }{ 252 } & \frac{ 1 }{ 9 } & \frac{ 5 }{ 11 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrrrr}
239500800 & 0 & 0 & 0 & 0 & 0 \\
0 & - 6652800 & 0 & 0 & 0 & 0 \\
0 & 0 & 66528 & 0 & 0 & 0 \\
0 & 0 & 0 & - \frac{ 2376 }{ 7 } & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{ 22 }{ 21 } & 0 \\
0 & 0 & 0 & 0 & 0 & - \frac{ 1 }{ 462 } \\
\end{array}
\right)
\left(
\begin{array}{rrrrrr}
1 & \frac{ 1 }{ 3 } & \frac{ 1 }{ 12 } & \frac{ 1 }{ 60 } & \frac{ 1 }{ 360 } & \frac{ 1 }{ 2520 } \\
0 & 1 & \frac{ 2 }{ 5 } & \frac{ 1 }{ 10 } & \frac{ 2 }{ 105 } & \frac{ 1 }{ 336 } \\
0 & 0 & 1 & \frac{ 3 }{ 7 } & \frac{ 3 }{ 28 } & \frac{ 5 }{ 252 } \\
0 & 0 & 0 & 1 & \frac{ 4 }{ 9 } & \frac{ 1 }{ 9 } \\
0 & 0 & 0 & 0 & 1 & \frac{ 5 }{ 11 } \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrrrr}
239500800 & 79833600 & 19958400 & 3991680 & 665280 & 95040 \\
79833600 & 19958400 & 3991680 & 665280 & 95040 & 11880 \\
19958400 & 3991680 & 665280 & 95040 & 11880 & 1320 \\
3991680 & 665280 & 95040 & 11880 & 1320 & 132 \\
665280 & 95040 & 11880 & 1320 & 132 & 12 \\
95040 & 11880 & 1320 & 132 & 12 & 1 \\
\end{array}
\right)
$$