$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}&\color{#66f}{\large\int_{0}^{1}{\ln\pars{1 - x^{2}} \over x}\,\dd x}
=\half\int_{0}^{1}{\ln\pars{1 - x} \over x}\,\dd x
=\half\int_{0}^{1}{\ln\pars{x} \over 1 - x}\,\dd x
\\[3mm]&=-\,\half\lim_{\mu \to 0}\partiald{}{\mu}\int_{0}^{1}
{1 - x^{\mu} \over 1 - x}\,\dd x
=-\,\half\lim_{\mu \to 0}\partiald{\color{#f00}{\Psi\pars{\mu + 1}}}{\mu}
=-\,\half\,\Psi'\pars{1}
\\[3mm]&=-\,\half\,\color{#f0f}{\zeta\pars{2}}
=-\,\half\,\color{maroon}{\pi^{2} \over 6}=\color{#66f}{\large -\,{\pi^{2} \over 12}}
\end{align}
Ver $\underline{\color{#f00}{6.3.22}}$,
$\underline{\color{#f0f}{6.4.2}}$y
$\underline{\color{maroon}{23.2.24}}$.